copley **Xenus**^{PLUS} 2-Axis CANopen

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

CONTROL MODES

- Indexer, Point-to-Point, PVT
- Camming, Gearing
- Position, Velocity, Torque

COMMAND INTERFACE

- CANopen
- ASCII and discrete I/O
- Stepper commands
- ±10V position/velocity/torque (2 inputs)
- PWM velocity/torque command
- Master encoder (Gearing/Camming)

COMMUNICATIONS

- CANopen
- RS-232
- FEEDBACK

Incremental

- Digital quad A/B encoder
- · Analog sin/cos encoder
- Panasonic Incremental A
- Aux. encoder / encoder out

Absolute

SSI

- EnDat 2.1 & 2.2
- Absolute A
- Tamagawa Absolute A
- Panasonic Absolute A Format

BiSS (B&C)

Other

Digital Halls

I/O DIGITAL

- 12 High-speed inputs
- 2 Motor over-temp inputs
- 8 Opto-isolated inputs
- 5 Opto-isolated outputs
- 2 Opto-isolated motor brake outputs

I/O ANALOG

• 2 Reference inputs, 14-bit

SAFE TORQUE OFF (STO)

• SIL 3, Category 3, PL d

DIMENSIONS: IN [MM]

• 9.24 [234.7] x 5.42 [137.6] x 3.59 [91.1]

DESCRIPTION

XP2 sets new levels of performance, connectivity, and flexibility. CANopen communication provides a widely used cost-effective industrial bus. A wide range of absolute encoders are supported.

Model	Vac	Ic	Iр
XP2-230-20	100~240	10	20
Add -R to model number for resolver option			

High resolution A/D converters ensure optimal current loop performance. Both isolated and high-speed non-isolated I/O are provided. For safety critical applications, redundant power stage enable inputs can be employed.

GENERAL SPECIFICATIONS

MODEL		XP2-230-20	
OUTPUT CURRENT (EACH A	XIS)		
Peak Current Peak time		20 (14) 1	Adc (Arms, sinusoidal) s
Continuous curre	nt (Note 1)	10 (7)	Adc (Arms, sinusoidal)
INPUT POWER			
Mains voltage, phas	se, frequency	100~240	, , , , ,
Mains current +24 Vdc Control po		20 +20 to +32 Vdc, 500 mA max _	Arms Required for operation
DIGITAL CONTROL	51101		
Digital Control Loop Sampling rate (time Bus voltage comper Minimum load induc	e) Current loop: 1 Insation Changes in bus Stance 200 µH line-line		
COMMAND INPUTS (NOTE:		IS ARE PROGRAMMABLE)	
Distributed Control Modes CANopen		Position, Velocity, Torque (Profile &	Interpolated modes) Homing
Stand-alone mode		rosition, velocity, lorque (rione a	Interpolated modes), noning
	city, position reference	± 10 Vdc, 14 bit resolution	Dedicated differential analog input
Digital position refer	rence	Pulse/Direction, CW/CCW Quad A/B Encoder	Stepper commands (2 MHz maximum rate) 2 M line/sec, 8 Mcount/sec (after guadrature)
Digital torque & velo	ocity reference	PWM , Polarity PWM 50%	PWM = 0% - 100% , Polarity = $1/0$ PWM = $50\% \pm 50\%$, no polarity signal required
		PWM frequency range PWM minimum pulse width	1 kHz minimum, 100 kHz maximum 220 ns
Indexing		Up to 32 sequences can be launche	
Camming		Up to 10 CAM tables can be stored	in flash memory
ASCII		RS-232, 9600~115,200 Baud, 3-wi	re, RJ-12 connector
DIGITAL INPUTS Number	22		
[IN1,11]		µs RC filter, 24 Vdc compatible, progr	ammable pull-up/down to +5 Vdc/ground,
		= 1.3~2.2 Vdc, VH = 0.7~1.5 Vdc	
[IN21, 22] [IN2~5,12~15]		1, but with fixed pull-up to +5 Vdc ended or differential pairs, 100 ns RC	filter 12 Vdc may
[112~3,12~13]		-up/down per input to +5 Vdc/ground	
	SE: Vin-LO \leq 2.3 Vdc, Vin	$h-HI \ge 2.7$ Vdc, VH = 45 mV typ, DIFf	F: Vin-LO \leq 200 mVdc, Vin-HI \geq 200 mVdc, VH = 45 mV typ
[IN6~9,16~19]	Opto-isolated, single-ended, ±15~30 Vdc compatible, bi-polar, 2 groups of 4 with common return for each group Rated impulse ≥ 800 V, Vin-LO ≤ 6.0 Vdc, Vin-HI ≥ 10.0 Vdc, Input current ±3.6 mA @ ±24 Vdc, typical		
[IN10,20]	Motor overtemp signals or	n feedback connectors, , Schmitt trigg	.nput current ±3.6 mA @ ±24 vdc, typical jer, 24 Vdc compatible /T- = 1.3~2.2 Vdc, VH = 0.7~1.5 Vdc
ANALOG INPUTS		· · ·	
Number	4		
[AIN1~2] [AIN3~4]	Differential, ±10 Vdc, 5 Single-ended motor ter	5 kΩ input impedance, 14-bit resolutio mperature sensor, 4.99 kΩ pulled-up	n to +5 Vdc 12-bit resolution
SAFE TORQUE OFF (STO)	Single ended, motor tel	inperature sensor, 4.55 ksz puneu-up	
Function			e possible when the STO function is asserted
Standard		-1, IEC-61508-2, IEC-61800-5-2, ISO	-13849-1
Safety Integrity Level Inputs	SIL 3, Category 3, Perfo	1+,STO-IN1-, STO-IN2+, STO-IN2-	
Туре	Opto-isolators, 24V com	npatible, Vin-LO \leq 6.0 Vdc or open, V	n-HI ≥ 15.0 Vdc,
Input current (typical)	STO-IN1: 9.0 mA, STO-	IN2: 4.5 mA	
Response time Reference	2 ms trom Vin ≤6.0 Vdc	c to interruption of energy supplied to n and specifications are in the Xen	motor us Plus 2-Axis STO Manual
DIGITAL OUTPUTS		· ····································	
Number	7		
[OUT1~5]		ns, 20 mA max, 24 V tolerant, collect	
[OUT6~7]	Motor brake control: op	oto-isolated, current-sinking with flyba	ick aloae to +24 Vac, 1 Adc max
RS-232 PORT Signals	RyD TyD God in 6-pos	sition, 4-contact RJ-12 style modular o	connector
Mode		communication port for drive setup ar	
Protocol	Binary and ASCII forma		
CAN PORT			
Signals Format			nector, wired as per CAN Cia DR-303-1, V1.1
Data	CAN v2.00 physical laye CANopen Device Profile	er for high-speed connections complia DSP-402	nic (Constant)
Address selection	16 position rotary switc	ch on front panel with 3 additional add	
	digital inputs or progra	ammable to flash memory (7-bit addre	essing, 127 nodes per CAN network)
STATUS INDICATOR LEDS	Bicolor IED drive status	is indicated by color and blinking are	on-blinking condition
Drive Status CAN Status		is indicated by color, and blinking or n CAN bus indicated by color and blink co	on-blinking condition odes to CAN Indicator Specification 303-3
5V OUTPUT			
5V OUTPUT Number		connectors (J10, J11), two on the co rmal and overload protected	ntrol connector (J12) for the A and B multi-mode ports

Xenus^{PLUS}2-Axis CANopen

GENERAL SPECIFICATIONS

esistor (see Ordering Guide for types) al external) regen resistor is dissipating energy al external) regen resistor not dissipating energy ut voltage ts turn off until +HV is less than overvoltage ts turn off until +HV is greater than undervoltage ts turn off until IGBT temperature is below threshold bridge faults peak time is above or below a set point 0~5 Vdc % of normal
al external) regen resistor not dissipating energy ut voltage ts turn off until +HV is less than overvoltage ts turn off until +HV is greater than undervoltage ts turn off until IGBT temperature is below threshold bridge faults peak time is above or below a set point 0~5 Vdc 5% of normal
ut voltage ts turn off until +HV is less than overvoltage ts turn off until +HV is greater than undervoltage ts turn off until IGBT temperature is below threshold bridge faults peak time is above or below a set point 0~5 Vdc i% of normal
ts turn off until +HV is greater than undervoltage ts turn off until IGBT temperature is below threshold bridge faults peak time is above or below a set point 0~5 Vdc ^{9%} of normal
ts turn off until +HV is greater than undervoltage ts turn off until IGBT temperature is below threshold bridge faults peak time is above or below a set point 0~5 Vdc ^{9%} of normal
ts turn off until IGBT temperature is below threshold bridge faults peak time is above or below a set point 0~5 Vdc % of normal
bridge faults peak time is above or below a set point 0~5 Vdc 5% of normal
is above or below a set point 0~5 Vdc % of normal
i% of normal
Shan that nade and an although a second or of DMAA and second
filter that reduces capacitive coupling of PWM outputs les and providing common-mode filtering of the servo drives operating near other cables the Xenus Regeneration Guide on the Copley Controls web-site <u>regen_guide-03-04.pdf</u>
g load is greater than the absorption default continuous power, 400 W max continuous power he <i>XTL-FA-01 Edge Filter for Xenus User Guide</i> on the rols.com/Motion/pdf/Xenus-Filter.pdf
4: 2010 (SIL 3)

Revision	Date	Remarks	
00	March 3, 2016	Initial released version	

Xenus^{PLUS} 2-Axis CANopen

FEEDBACK: XP2-230-20

copley (

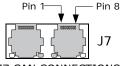
FEEDBACK	
Incremental:	
Digital Incremental Encoder	Quadrature signals, (A, /A, B, /B, X, /X), differential (X, /X Index signals not required) 5 MHz maximum line frequency (20 M counts/sec) MAX3097 differential line receiver with 121 Ω terminating resistor between complementary inputs
Analog Incremental Encoder	Sin/cos format (sin+, sin-, cos+, cos-), differential, 1 Vpeak-peak, ServoTube motor compatible, BW > 300 kHz, 121 Ω terminating resistor between complementary inputs
Analog Index signal Panasonic Incremental A Forn Sanyo Denki Wire-saving Incr Absolute:	
SSI EnDAT	Clock (X, /X), Data (S, /S) signals, 4-wire, clock output from XP2, data returned from encoder Clock (X, /X), Data (S, /S), sin/cos (sin+, sin-, cos+, cos-) signals te A, Panasonic Absolute A Format, Sanyo Denki Absolute A SD+, SD- (S, /S) signals, 2.5 or 4 MHz, 2-wire half-duplex communication Position feedback: 13-bit resolution per rev, 16 bit revolution counter (29 bit absolute position data) Status data for encoder operating conditions and errors
BiSS (B&C)	MA+, MA- $(X, /X)$, SL+, SL- $(S, /S)$ signals, 4-wire, clock output from XP2, data returned from encoder
DIGITAL HALLS	
Туре	Digital, single-ended, 120° electrical phase difference between U-V-W signals, Schmitt trigger, 1 μ s RC filter, 24 Vdc compatible, programmable pull-up/down to +5 Vdc/ground, Vt+ = 2.5~3.5 Vdc, VT- = 1.3~2.2 Vdc, VH = 0.7~1.5 Vdc
Inputs	10 k Ω pullups to +5 Vdc, 1 µs RC filter to Schmitt trigger inverters
MULTI-MODE ENCODER PORT	
As Input	Digital quadrature encoder (A, /A, B, /B, X, /X), 121 Ω terminating resistors between A & /A, B & /B inputs 18 M-counts/sec, post-quadrature (4.5 M-lines/sec) Digital absolute encoder (Clk, /Clk, Dat, /Dat) half or full-duplex operation, 121 Ω terminating resistors
As Emulated Output	Quadrature encoder emulation with programmable resolution to 4096 lines (65,536 counts) per rev from analog sin/cos encoders A, /A, B, /B, outputs from MAX3032 differential line driver, X, /X, S, /S outputs from MAC3362 drivers
As Buffered Output	Digital encoder feedback signals from primary digital encoder are buffered by MAX3032 line driver
ENCODER POWER SUPPLIES	
Number	4, two on the feedback connectors (J10, J11), two on the control connector (J12) for the A and B multi-mode ports
Ratings	+5 Vdc @ 500 mA, thermal and overload protected, each output. 2000 mA total for all four outputs)

FEEDBACK: XP2-230-20-R

RESOLVER	
Туре	Brushless, single-speed, 1:1 to 2:1 programmable transformation ratio
Resolution	14 bits (equivalent to a 4096 line quadrature encoder)
Reference frequency	8.0 kHz
Reference voltage Reference maximum current	2.8 Vrms, auto-adjustable by the drive to maximize feedback
Maximum RPM	10,000+
Sin/Cos inputs	Differential, 54k ±1% differential impedance, 2.0 Vrms, BW \geq 300 kHz
DIGITAL HALLS	
Туре	Digital, single-ended, 120° electrical phase difference between U-V-W signals,
	Schmitt trigger, 1 μ s RC filter, 24 Vdc compatible, programmable pull-up/down to +5 Vdc/ground,
	Vt+ = 2.5~3.5 Vdc, VT- = 1.3~2.2 Vdc, VH = 0.7~1.5 Vdc
Inputs	10 k Ω pullups to +5 Vdc, 1 μ s RC filter to Schmitt trigger inverters
MULTI-MODE ENCODER PORT	
As Input	Digital quadrature encoder (A, /A, B, /B, X, /X), 121 Ω terminating resistors between A & /A, B & /B inputs 18 M-counts/sec, post-quadrature (4.5 M-lines/sec)
	Digital absolute encoder (Clk, /Clk, Dat, /Dat) half or full-duplex operation, 121 Ω terminating resistors (See above for listing of absolute encoder types. EnDat Sin/Cos signals are not supported)
As Emulated Output	Quadrature encoder emulation with programmable resolution to 4096 lines (65,536 counts) per rev from resolver, A, /A, B, /B, outputs from MAX3032 differential line driver, X, /X, S, /S outputs from MAC3362 drivers
ENCODER POWER SUPPLIES	
Number	4, two on the feedback connectors (J10, J11), two on the control connector (J12) for the A and B multi-mode ports
Ratings	+5 Vdc @ 500 mA, thermal and overload protected, each output. 2000 mA total for all four outputs)

J7

CANOPEN COMMUNICATIONS


Xenus uses the CAN physical layer signals CANH, CANL, and GND for connection, and CANopen protocol for communication.

Before installing the drive in a CAN system, it must be assigned a CAN address. A maximum of 127 CAN nodes are allowed on a single CAN bus. The rotary switch on the front panel controls the four lower bits of the seven-bit CAN address. When the number of nodes on a bus is less than sixteen, the CAN address can be set using only the switch.

For installations with sixteen or more CAN nodes on a network CME 2 can be used to configure Xenus to use the rotary switch, or combinations of digital inputs and programmed offset in flash memory to configure the drive with a higher CAN node address. For more information on CANopen communications, download the CANopen Manual from the Copley web-site: http://www.copleycontrols.com/motion/downloads/pdf/CANopenProgrammersManual.pdf

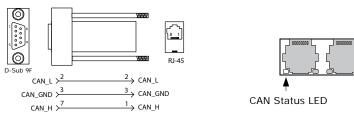
CANOPEN CONNECTORS

Dual RJ-45 connectors that accept standard Ethernet cables are provided for CAN bus connectivity. Pins are wired-through so that drives can be daisychained and controlled with a single connection to the user's CAN interface. A CAN terminator should be placed in the last drive in the chain. The XP2-NK connector kit provides a D-Sub adapter that plugs into a CAN controller and has an RJ-45 socket that accepts the Ethernet cable.

J7 CAN CONNECTIONS

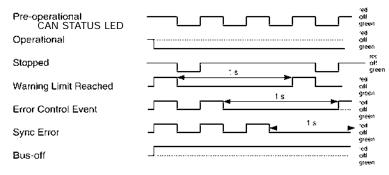
NET (CAN STATUS) LED

A bi-color LED gives the state of the CAN connection in accordance with the CAN-CiA specification 303, part 3. The green (RUN) LED shows the state of the CANopen state machine. The red (ERR) LED shows the occurrence of errors (sync, guard, or heartbeat) and of the CAN bus physical layer.


During a reset condition, the green LED will be off. In operation, the red & green colors will alternate with the number of blinks or on/off condition shown in the table to the right.

Note: Red & green led on-times do not overlap. LED color may be red, green, off, or flashing of either color.

CAN NETWORK NODE-ID (ADDRESS)



The kit contains the XP2-CV adapter that converts the CAN interface D-Sub 9M connector to an RJ-45 Ethernet cable socket, plus a 10 ft (3 m) cable and terminator. Both connector pin-outs conform to the CiA DR-303-1 specification.

Note: Red & green led on-times do not overlap. LED color may be red, green, off, or flashing of either color.

In an CANopen network, nodes are assigned addresses 1~127. Address 0 is reserved for the CAN bus master. In the XPL, the node address is provided by two 16-position rotary switches with hexadecimal encoding. These can set the address of the drive from 0x01~0x7F (1~127 decimal). The chart shows the decimal values of the hex settings of each switch.

		0
X10 X1	Node-ID (Address) Switches	1
	To find the Node-ID given the switch settings:	2
	Node-ID = $(S1 * 16) + S2$	3
X16 X1	Example: $S1 = 5, S2 = B$	4
	S1 value = $(5*16) = 80$, S2 value = Hex(B) = 11,	5
	Node-ID = $80 + 11 = 91$	6
EtherCAT Settings	To find the quitch pattings for a given address	7
51: 1	To find the switch settings for a given address: S1 = The integer part of (Node-ID / 16)	8
52: 1	S2 = Hex (Node-ID - (S1 * 16))	9
Resulting Address: 1	Example: Node-ID = 91	А
	S1 = 91/16 = 5.69, integer part = 5, (5*16) = 80	В
Close	S2 = Hex (91 - 80) = 11 = 0xB	С
		D

CME2 -> Amplifier -> Network Configuration

S1

16

32

48

64

80

96

112

Not Used

for

CAN Addr

DEC 0

HEX

F

S2

0

1

2

3

4

5

6

11

12

13

14

15

PIN

2

3,4

5

Don't forget to order a Serial Cable Kit SER-CK when

SIGNAL

RxD

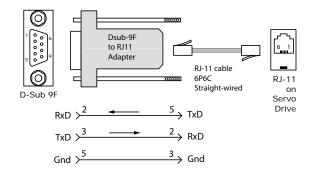
Gnd

Txd

COMMUNICATIONS: RS-232 SERIAL

XP2 is configured via a three-wire, full-duplex DTE RS-232 port that operates from 9600 to 115,200 Baud, 8 bits, no parity, and one stop bit. Signal format is full-duplex, 3-wire, DTE using RxD, TxD, and Gnd. Connections to the XP2 RS-232 port are through J7, an RJ-11 connector. The XP2 Serial Cable Kit (SER-CK) contains a modular cable, and an adapter that connects to a 9-pin, Sub-D serial port connector (COM1, COM2, etc.) on PC's and compatibles.

J6: RS-232 PORT


RJ-11 receptacle,

6 position, 4 contact

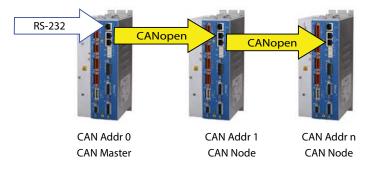
placing your order for an XP2!

SER-CK SERIAL CABLE KIT

The SER-CK provides connectivity between a D-Sub 9 male connector and the RJ-11 connector on the XP2. It includes an adapter that plugs into the COM1 (or other) port of a PC and uses common modular cable to connect to the XP2. The connections are shown in the diagram below.

ASCII COMMUNICATION PROTOCOL

ASCII COMMUNICATIONS


The Copley ASCII Interface is a set of ASCII format commands that can be used to operate and monitor Copley Controls Accelnet, Stepnet, and Xenus series amplifiers over an RS-232 serial connection. For instance, after basic amplifier configuration values have been programmed using CME 2, a control program can use the ASCII Interface to:

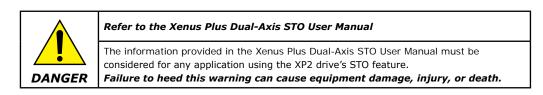
- Enable the amplifier in Programmed Position mode.
- Home the axis.
- Issue a series of move commands while monitoring position, velocity, and other run-time
- variables.

Additional information can be found in the ASCII Programmers Guide on the Copley website: <u>http://www.copleycontrols.com/Motion/pdf/ASCII ProgrammersGuide.pdf</u>

RS-232 MULTI-DROP

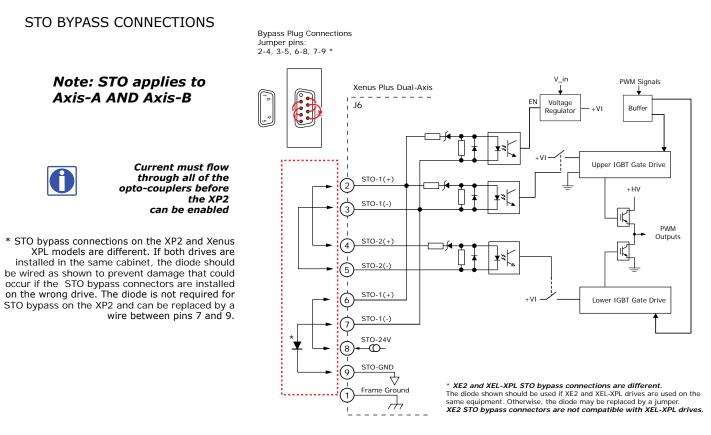
The RS-232 specification makes no allowance for more than two devices on a serial link. But, multiple Xenus drives can communicate over a single RS-232 port by daisy-chaining a master drive to other drives using CAN cables. In the CAN protocol, address 0 is reserved for the CAN master and thereafter all other nodes on a CAN network must have unique, non-zero addresses. When the Xenus CAN address is set to 0, it acts as a CAN master, converting the RS-232 data into CAN messages and passing it along to the other drives which act as CAN nodes.

For Serial-multi-drop you'll need an Serial Cable Kit SER-CK plus CANopen network cables to connect the drives as shown. The XP2-NC-01 and XP2-NC-10 are 1 ft (0.3m) and 10 ft (3m) cables that will do the job.

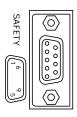


SAFE TORQUE OFF (STO)

DESCRIPTION


The XP2 provides the Safe Torque Off (STO) function as defined in IEC 61800-5-2. Three opto-couplers are provided which, when de-energized, prevent the upper and lower devices in the PWM outputs from being operated by the digital control core. This provides a positive OFF capability that cannot be overridden by the control firmware, or associated hardware components. When the opto-couplers are activated (current is flowing in the input diodes), the control core will be able to control the on/off state of the PWM outputs.

INSTALLATION



STO BYPASS (MUTING) In order for the PWM outputs of the XP2 to be activated, current must be flowing through all of the opto-couplers that are connected to the STO-1 and STO-2 terminals of J6, and the drive must be in an ENABLED state. When the opto-couplers are OFF, the drive is in a Safe Torque Off (STO) state and the PWM outputs cannot be activated by the control core to drive a motor. This diagram shows connections that will energize all of the opto-couplers from an internal current-source. When this is done the STO feature is overridden and control of the output PWM stage is under control of the digital control core

If not using the STO feature, these connections must be made in order for the XP2 to be enabled.

SAFETY CONNECTOR J6

J6 SIGNALS

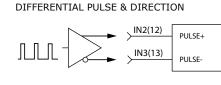
_				
F	PIN	SIGNAL	PIN	SIGNAL
	1	Frame Gnd	6	STO-1(+)
	2	STO-1(+)	7	STO-1(-)
Γ	3	STO-1(-)	8	STO-24V
Г	4	STO-2(+)	9	STO-GND
	5	STO-2(-)		

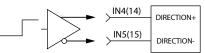
copley **Xenus**^{PLUS} 2-Axis CANopen

HIGH SPEED INPUTS: IN2, IN3, IN4, IN5, IN12, IN13, IN14, IN15

DIGITAL POSITION

Digital position commands can be in either single-ended or differential format. Single-ended signals should be sourced from devices with active pull-up and pull-down to take advantage of the high-speed inputs. Differential inputs have 121 Ω line-terminators.

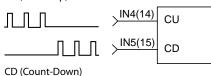

SINGLE-ENDED PULSE & DIRECTION


IN4(14)

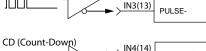
IN5(15)

Pulse

Direction

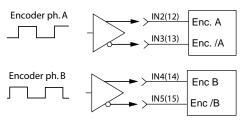

COMMAND SINGLE-ENDED

Signal	Axis A	Axis B
Pls, Enc A	J12-10	J12-15
Dir, Enc B	J12-11	J12-30
Sgnd	J12-6,16,22,31,37,44	
Shld	J12-1	


SINGLE-ENDED CU/CD

CU (Count-Up)

Encoder ph. A



CU (Count-Up)

DIRECTION+

QUAD A/B ENCODER DIFFERENTIAL

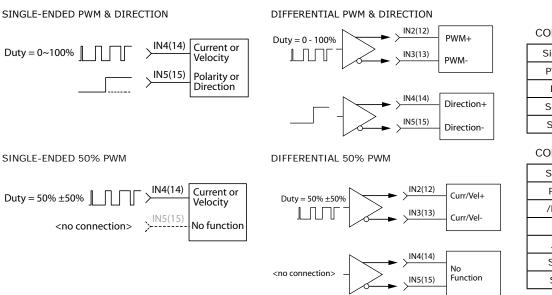
COMMAND DIFFERENTIAL

Signal	Axis A	Axis B
Pls, Enc A	J12-8	J12-13
/Pls, Enc /A	J12-9	J12-14
Dir, Enc B	J12-10	J12-15
/Dir, Enc /B	J12-11	J12-30
Sgnd	J12-6,16,22,31,37,44	
Shld	J12-1	

Encoder ph.B

QUAD A/B ENCODER SINGLE-ENDED

IN4(14)

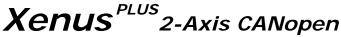

IN5(15)

Enc. A

Enc. B

DIGITAL TORQUE, VELOCITY

Digital torque or velocity commands can be in either single-ended or differential format. Single-ended signals must be sourced from devices with active pull-up and pull-down to take advantage of the high-speed inputs.

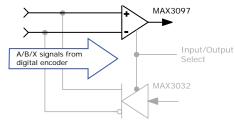

COMMAND SINGLE-ENDED

Signal	Axis A	Axis B
PWM	J12-10	J12-15
Dir	J12-11	J12-30
Sgnd	J12-6,16,22,31,37,44	
Shld	J12-1	

COMMAND DIFFERENTIAL

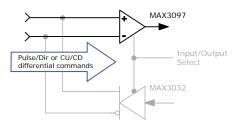
Signal	Axis A	Axis B
PWM	J12-8	J12-13
/PWM	J12-9	J12-14
Dir	J12-10	J12-15
/Dir	J12-11	J12-30
Sgnd	J12-6,16,22,31,37,44	
Shld	J12-1	

copley controls Xe

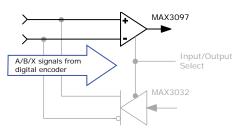


MULTI-MODE ENCODER PORT AS AN INPUT

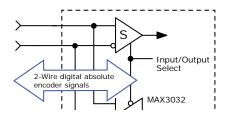
INPUT TYPES


POSITION COMMAND INPUTS: DIFFERENTIAL

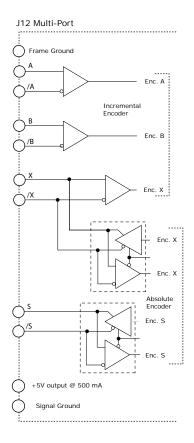
- Pulse & Direction
- CW & CCW (Clockwise & Counter-Clockwise)
- Encoder Quad A & B
- Camming Encoder A & B input


CURRENT or VELOCITY COMMAND INPUTS: DIFFERENTIAL

- Current or Velocity & Direction
- Current or Velocity (+) & Current or Velocity (-)


SECONDARY FEEDBACK: INCREMENTAL

- Quad A/B/X incremental encoder
- Quad A/B emulated encoder from sin/cos encoder


SECONDARY FEEDBACK: ABSOLUTE

- S channel: Absolute A encoders (2-wire) The S channel first sends a Clock signal and then receives Data from the encoder in half-duplex mode.
- S & X channels: SSI, BiSS, EnDat encoders (4-wire) The X channel sends the Clock signal to the encoder, which initiates data transmission from the encoder on the S-channel in full-duplex mode

COMMAND INPUT MULTI-PORT

Signal	Axis A	Axis B	
Pls, Enc A	J12-36	J12-42	
/Pls, Enc /A	J12-21	J12-27	
Dir, Enc B	J12-35	J12-41	
/Dir, Enc /B	J12-20	J12-26	
Enc X	J12-34	J12-40	
Enc /X	J12-19	J12-25	
Sgnd	J12-6,16,22,31,37,44		
Shld	J12-1		

EMULATED QUAD A/B/X MULTI-PORT

Signal	Axis A	Axis B	
Enc A	J12-36	J12-42	
Enc /A	J12-21	J12-27	
Enc B	J12-35	J12-41	
Enc /B	J12-20	J12-26	
Enc X	J12-34	J12-40	
Enc /X	J12-19	J12-25	
Sgnd	J12-6,16,22,31,37,44		
Shld	J12-1		

Xenus^{PLUS}2-Axis CANopen

C1

100p

100p

33n

100p

Vm

+24

+12

±24

+24

R2

10k

1k

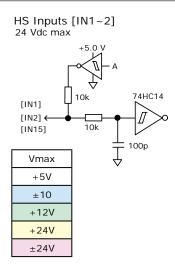
Opto

10k

10k

R1

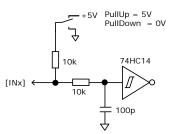
10k


10k

4.99k

10k

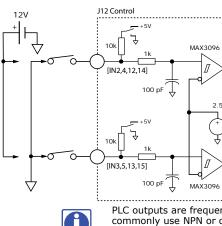
GENERAL PURPOSE INPUTS


coplev

Input	Pin	R1	R2	C1	Vm	Input	Pin
*IN1	J12-7	10k	10k	100p	+24	*IN11	J12-12
*IN2	J12-8					*IN12	J12-13
*IN3	J12-9	104		10	*IN13	J12-14	
*IN4	J12-10	10k	1k	100p	+12	*IN14	J12-15
*IN5	J12-11					*IN15	J12-30
IN6	J9-2					IN16	J9-7
IN7	J9-3					IN17	J9-8
IN8	J9-4		Opto			IN18	J9-9
IN9	J9-5					IN19	J9-18
ICOM1	J9-6					ICOM2	J9-17
IN10	J10-7	4.99k	10k	33n	+24	IN20	J11-7
IN21	J10-24	10k	10k	100p	+24	IN22	J11-24

* PROGRAMMABLE PULL UP/DOWN

The input resistor of these inputs is programmable to pull-up to +5V or pull-down to 0V. Pull-up is the default and works with current-sinking outputs from a controller. Pull-down works with current-sourcing outputs, typically PLC's that drive grounded loads. Six of the inputs have individually settable PU/PD. The other four have PU/PD control for pairs of inputs.



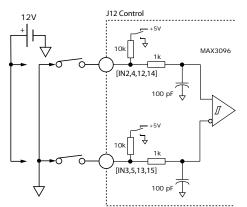
SINGLE-ENDED/DIFFERENTIAL DIGITAL INPUTS [IN2~5,12~15] These inputs have all the programmable functions of the GP inputs plus these additional functions which can be configured as single-ended (SE)

or differential (DIFF):

- PWM 50%, PWM & Direction for Velocity or Current modes
- Pulse/Direction, CU/CD, or A/B Quad encoder inputs for Position or Camming modes

SINGLE-ENDED 12 Vdc max

INPUTS WITH PROGRAMMABLE PULL UP/DOWN


				/	
Input	Pin	PU/PD	Input	Pin	PU/PD
IN1	J12-7	1	IN11	J12-12	5
IN2	J12-8	2	IN12	J12-13	6
IN3	J12-9	3	IN13	J12-14	7
IN4	J12-10	4	IN14	J12-15	0
IN5	J12-11	4	IN15	J12-30	8

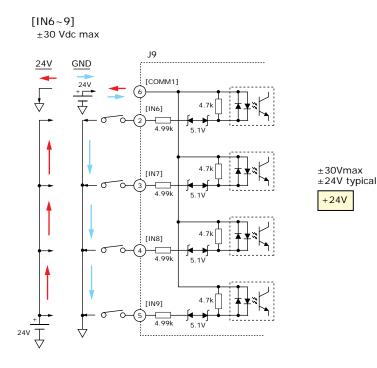
[IN2~5,12~15] SIGNALS

S.E.	Diff	Pin	S.E.	Diff	Pin
Input	Input	FIII	Input	Input	FIII
IN2	IN2+	J12-8	IN12	IN12+	J12-13
IN3	IN2-	J12-9	IN13	IN12-	J12-14
IN4	IN4+	J12-10	IN14	IN14+	J12-15
IN5	IN4-	J12-11	IN15	IN14-	J12-30

DIFFERENTIAL

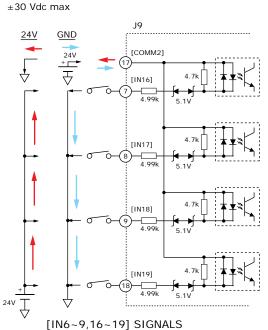
12 Vdc max

PLC outputs are frequently current-sourcing from 24V for driving grounded loads. PC based digital controllers commonly use NPN or current-sinking outputs. Set the Xenus inputs to pull-down to ground for current-sourcing connections, and to pull-up to 5V for current-sinking connections.



These inputs have all the programmable functions of the GP inputs plus opto-isolation. There are two groups of four inputs, each with its' own common terminal. Grounding the common terminal configures the inputs to work with current-sourcing outputs from controllers like PLC's. When the common terminal is connected to +24V, then the inputs will be activated by current-sinking devices such as NPN transistors or N-channel MOSFETs. The minimum ON threshold of the inputs is ± 15 Vdc.

[IN16~19]


IN THE GRAPHICS BELOW, "24V" IS FOR CONNECTIONS TO CURRENT-SOURCING OUTPUTS AND "GND" IS FOR CURRENT-SINKING OUTPUTS ON THE CONTROL SYSTEM

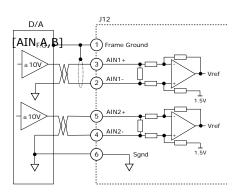
+24V

These inputs work with current-sourcing OR current-sinking connections. Connect the COMM to controller ground/common for current-sourcing connections and to 15~24V from the controller for current-sinking connections.

Pins Signal Signal Pins J9-7 IN6 19-2 IN16 J9-3 IN7 IN17 J9-8 IN8 J9-4 IN18 J9-9 IN9 J9-5 IN19 J9-18 J9-17 COMM1 J9-6 COMM2

RoHS

CE

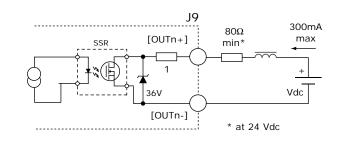


ANALOG INPUTS

The analog inputs have a ± 10 Vdc range at 14-bit resolution As reference inputs they can take position/velocity/torque commands from a controller. If not used as command inputs, they can be used as general-purpose analog inputs.

[AIN A,B]	SIGNALS
-----------	---------

	1		
Signal	Axis A	Axis B	
AIN(+)	J12-3	J12-5	
AIN(-)	J12-2	J12-4	
Sgnd	J12-6,16,22,31,37,44		
Shield	J12-1		



ISOLATED GENERAL PURPOSE OUTPUTS OUT1~5

- Digital, opto-isolated
- SSR, 2-terminal
- Flyback diode for inductive loads
- 24V Compatible
- Programmable functions

[OUT1~5] SIGNALS

Signal	Pins	Signal	Pins
[OUT1+]	J9-19	[OUT1-]	J9-10
[OUT2+]	J9-20	[OUT2-]	J9-11
[OUT3+]	J9-21	[OUT3-]	J9-12
[OUT4+]	J9-22	[OUT4-]	J9-13
[OUT5+]	J9-23	[OUT5-]	J9-14

HI/LO DEFINITIONS: [OUT1~5]

Input	State	Condition	
HI HI	Output transistor is ON, current flows		
OUT1~5 LO		Output transistor is OFF, no current flows	

±30Vma ±24V ty	
+24V	

30 Vdc max

Zener clamping diodes across outputs allow driving of resistive-inductive (R-L) loads without external flyback diodes.

copley **Xenus**^{PLUS} 2-Axis CANopen

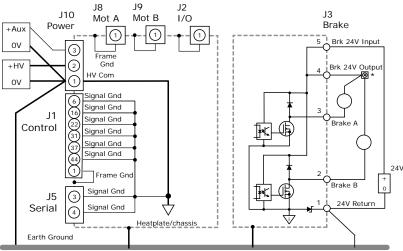
ISOLATED BRAKE OUTPUTS

- Brake outputs Opto-isolated
- Flyback diodes for inductive loads
- 24V Compatible
- Connection for external 24V power supply
- Programmable functions •

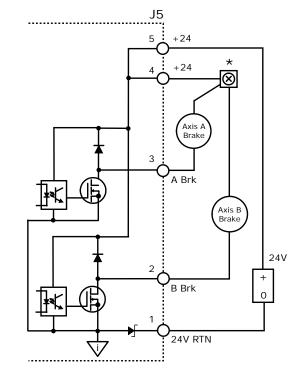
SPECIFICATIONS

Output	Data	Notes
Voltage Range	Max	+30 Vdc
Output Current	Ids	1.0 Adc

HI/LO DEFINITIONS: OUTPUTS


Input	State	Condition
BRK-A,B	ні	Output transistor is OFF Brake is un-powered and locks motor Motor cannot move Brake state is Active
OUT6,7	LO	Output transistor is ON Brake is powered, releasing motor Motor is free to move Brake state is NOT-Active

CME2 Default Setting for Brake Outputs [OUT6,7] is "Brake - Active HI" Active = Brake is holding motor shaft (i.e. the Brake is Active)


Motor cannot move No current flows in coil of brake CME2 I/O Line States shows Output 6 or 7 as HI BRK Output voltage is HI (24V), MOSFET is OFF Servo drive output current is zero Servo drive is disabled, PWM outputs are off

Inactive = Brake is not holding motor shaft (i.e. the Brake is Inactive) Motor can move Current flows in coil of brake CME2 I/O Line States shows Output 6 or 7 as LO BRK output voltage is LO (~0V), MOSFET is ON

Servo drive is enabled, PWM outputs are on Servo drive output current is flowing

This diagram shows the connections to the drive that share a common ground in the driver. If the brake 24V power supply is separate from the DC supply powering the drive, it is important that it connects to an earth or common grounding point with the HV power supply.

The brake circuits are optically isolated from all drive circuits and frame ground.

CONNECTIONS

Pin	Signal
5	+24V
4	+24V
3	A Brk [OUT6]
2	B Brk [OUT7]
1	24V Return

potential differences between power supply OV terminals.

Earthing connections for power supplies should be as close as possible to elimimate

MOTOR CONNECTIONS: ENCODER & RESOLVER

Motor connections are of three types: phase, feedback, and thermal sensor. The phase connections carry the drive output currents that drive the motor to produce motion. A thermal sensor that indicates motor overtemperature is used to shut down the drive to protect the motor. Feedback can be digital quad A/B encoder, analog sin/cos encoder, resolver or digital Halls, depending on the version of the drive.

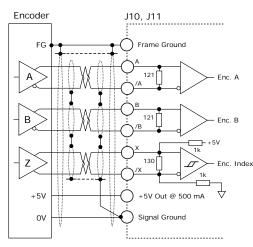
OUAD A/B ENCODER WITH FAULT PROTECTION

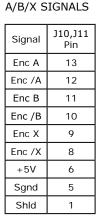
Encoders with differential line-driver outputs are required (single-ended encoders are not supported) and provide incremental position feedback via the A/B signals and the optional index signal (X) gives a once per revolution position mark. The MAX3097 receiver has differential inputs with fault protections for the following conditions:

Short-circuits line-line:

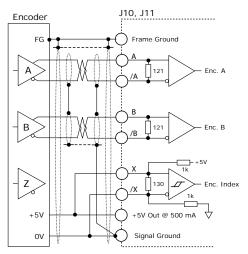
Open-circuit condition:

This produces a near-zero voltage between A & /A which is below the differential fault threshold. The 121 Ω terminator resistor will pull the inputs together if either side (or both) is open. This will produce the same fault condition as a short-circuit across the inputs.


Low differential voltage detection.

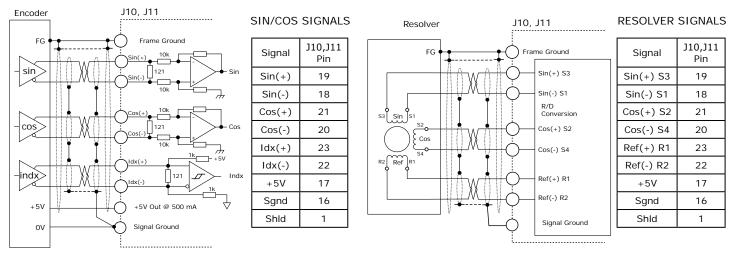

This is possible with very long cable runs and a fault will occur if the differential input voltage is < 200mV. The 3097E has protection against high-voltage discharges using the Human Body Model. A fault occurs if the input common-mode voltage is outside of the range of -10V to +13.2V

±15kV ESD protection:


Extended common-mode range:

CONNECTIONS WITH A/B/X ENCODER*

SHIELDED CABLE CONNECTIONS


Double-shielded cable is recommended for resolvers and analog sin/cos encoders. The outer shield connects to the motor and drive frames. The inner shield(s) should only connect to the Signal Ground at the drive. The inner shields shown here are for individually shielded twisted-pair cables. If the inner shield is a single one, it connects to Signal Ground at the drive. The inner shield should have no connection at the motor, or the the outer shield. Double-shielding is used less frequently for digital encoders, but the connections are shown here and on following pages for completeness.

ANALOG SIN/COS INCREMENTAL ENCODER**

The sin/cos/idx inputs are differential with 121 Ω terminating resistors and accept 1 Vp-p signals in the format used by incremental encoders with analog outputs, or with ServoTube motors

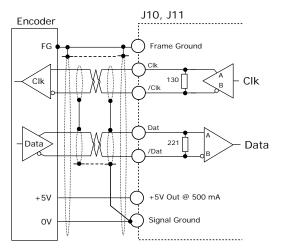
RESOLVER (XP2-230-20-R)

Resolver set up, motor phasing, and other commissioning adjustments are made with CME 2 software. There are no hardware adjustments.

Notes for XP2-230-20-R model:

* These connections are not supported on J10 & J11. The Multi-Port on J12 can be programmed to accept these feedback types.

** Sin/Cos feedback is not supported.



MOTOR CONNECTIONS: ABSOLUTE ENCODERS

SSI ABSOLUTE ENCODER*

The SSI (Synchronous Serial Interface) is an interface used to connect an absolute position encoder to a motion controller or control system. The XEL drive provides a train of clock signals in differential format to the encoder which initiates the transmission of the position data on the subsequent clock pulses. The polling of the encoder data occurs at the current loop frequency (16 kHz). The number of encoder data bits and counts per motor revolution are programmable. The hardware bus consists of two signals: SCLK and SDATA. Data is sent in 8 bit bytes, LSB first. The SCLK signal is only active during transfers. Data is clocked out on the falling edge and clock in on the rising edge of the Master.

BISS ABSOLUTE ENCODER*

BiSS is an - Open Source - digital interface for sensors and actuators. BiSS refers to principles of well known industrial standards for Serial Synchronous Interfaces like SSI, AS-Interface® and Interbus® with additional options.

Serial Synchronous Data Communication

- Cyclic at high speed
- 2 unidirectional lines Clock and Data Line delay compensation for high speed data transfer
 - Request for data generation at slaves
 - Safety capable: CRC, Errors, Warnings Bus capability incl. actuators
- Bidirectional

Signal

Clk

/Clk

Data

/Data

+5V

Sgnd Shld

ENDAT SIGNALS

Signal

Clk

/Clk

Data

/Data

Sin(+)

Sin(-)

Cos(+)

Cos(-)

+5V

Sgnd

Shld

J10,J11

Pin

9

8

15

14

19

18

21

20

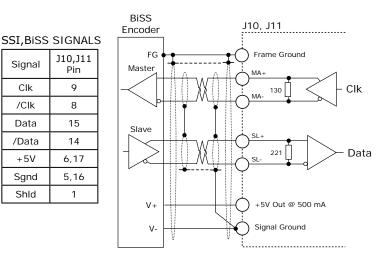
6,17

5,16

1

Pin

9


8

15

14

1

BiSS B-protocol: Mode choice at each cycle start BiSS C-protocol: Continuous mode

ENDAT ABSOLUTE ENCODER*

Encoder

Data

sin

cos

+5V

O٧

J10, J11

Frame Ground

130

221

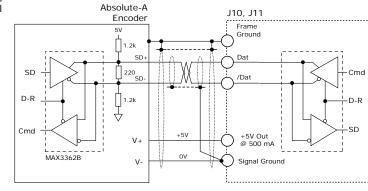
121

121

+5V Out @ 500 mA

Signal Ground

in(+)


The EnDat interface is a Heidenhain interface that is similar to SSI in the use of clock and data signals, but which also supports analog sin/cos channels from the same encoder. The number of position data bits is programmable as is the use of sin/cos channels. Use of sin/cos incremental signals is optional in the EnDat specification.

Clk

Data

Cos

ABSOLUTE-A ENCODER & INCREMENTAL A* The interface is a serial, half-duplex type that is electrically the same as RS-485.

ABSOLUTE ENCODERS

Absolute-A Tamagawa Absolute-A Panasonic Absolute A Format Sanyo Denki Absolute-A

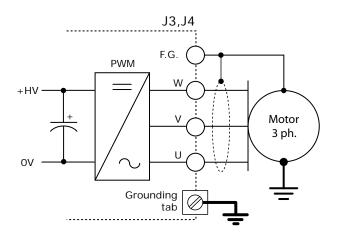
INCREMENTAL ENCODERS Panasonic Incremental A

ABSOLUTE-A SIGNALS

Signal	J10,J11 Pin	
Data	15	
/Data	14	
+5V	6,17	
Sgnd	5,16	
Shld	1	

Notes for XP2-230-20-R model:

* These connections are not supported on J10 & J11. The Multi-Port on J12 can be programmed to accept these feedback types.

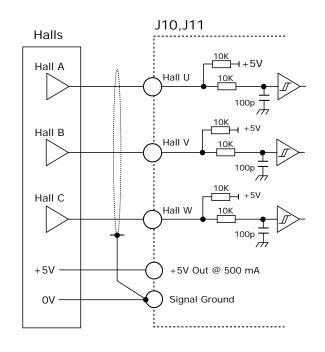


MOTOR CONNECTIONS: MOTOR, HALLS, OVERTEMP

MOTOR PHASE CONNECTIONS

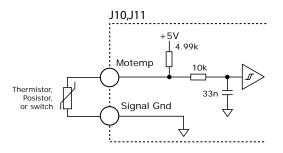
The drive output is a three-phase PWM inverter that converts the DC buss voltage (+HV) into three sinusoidal voltage waveforms that drive the motor phase-coils. Cable should be sized for the continuous current rating of the motor. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the drive frame ground terminal (J3,J4-1) for best results.

MOTOR SIGNALS			
Signal	J3,J4 Pin		
Mot U	4		
Mot V	3		
Mot W	2		
Shield	1		



DIGITAL HALL SIGNALS

Hall signals are single-ended signals that provide absolute feedback within one electrical cycle of the motor. There are three of them (U, V, & W) and they may be sourced by magnetic sensors in the motor, or by encoders that have Hall tracks as part of the encoder disc. They typically operate at much lower frequencies than the motor encoder signals, and are used for commutation-initialization after startup, and for checking the motor phasing after the amplifier has switched to sinusoidal commutation.


HALL SI	GNALS
---------	-------

Signal	J10,J11 Pin
Hall U	2
Hall V	3
Hall W	4
+5V	6,17
Sgnd	5,16 25,26

MOTOR OVER TEMP INPUT

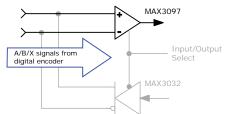
The 4.99k pull-up resistor works with PTC (positive temperature coefficient) thermistors that conform to BS 4999:Part 111:1987 (table below), or switches that open/close indicating a motor over-temperature condition. The active level is programmable.

MOTEMP SIGNALS

	UNALS	
Signal	Pin	
Motemp A	J10-7	+30Vmax +24V typic
Motemp B	J11-7	+24V
Sgnd	J10,J11 -5,16,25,26	

Property	Ohms
Resistance in the temperature range 20°C to +70°C	60~750
Resistance at 85°C	≤1650
Resistance at 95°C	≥3990
Resistance at 105°C	≥12000

' typical



MULTI-MODE ENCODER PORT

The multi-mode port can operate as primary or secondary feedback from digital quad A/B/X or absolute encoders.

FEEDBACK FROM DIGITAL QUADRATURE ENCODER

When operating in position mode the multi-mode port can accept digital command signals from external encoders. These can be used to drive cam tables, or as master-encoder signals when operating in a master/ slave configuration.

Data & Clk signals from

SSI BiSS

EnDat

Absolute-A

absolute encoder

MAX3097

MAX3032

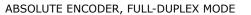
FULL-DUPLEX ENCODERS

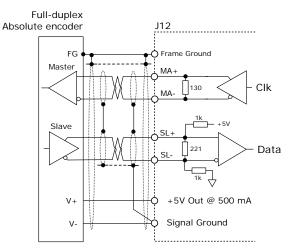
HALF-DUPLEX ENCODERS

Sanyo Denki Absolute-A

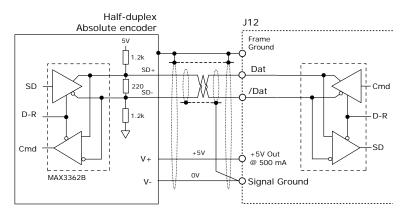
Tamagawa Absolute-A

Input/Output


Select


EMULATED QUAD A/B/X MULTI-PORT

-		
Signal	Axis A Pin	Axis B Pin
Enc A	J12-36	J12-42
Enc /A	J12-21	J12-27
Enc B	J12-35	J12-41
Enc /B	J12-20	J12-26
Enc X	J12-34	J12-40
Enc /X	J12-19	J12-25
+5V	32,17	J12-38,23
Sgnd	J12-31,16	J12-37,22
Shld	J12-1	


FEEDBACK FROM ABSOLUTE ENCODERS

Digital absolute encoder feedback as motor or load encoder can come from absolute encoders, too. Analog sin/cos and index signals are not supported by the multi-port. The graphic to the right shows half-duplex format but both full and half-duplex operation are supported by the multi-port (see below)

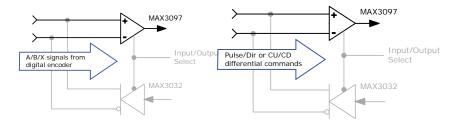
ABSOLUTE ENCODER, HALF-DUPLEX MODE

FULL-DUPLEX SIGNALS

Signal	Axis A Pin	Axis B Pin
CIk, MA+	J12-34	J12-40
/Clk, MA-	J12-19	J12-25
Dat, SL+	J12-33	J12-39
/Dat, SL-	J12-18	J12-24
+5V	J12-32,17	J12-38,23
Sgnd	J12-31,16	J12-37,22
Shld	J12-1	

HALF-DUPLEX SIGNALS

Signal	Axis A Pin	Axis B Pin
Dat	J12-33	J12-39
/Dat	J12-18	J12-24
+5V	J12-32,17	J12-38,23
Sgnd	J12-31,16	J12-37,22
Shld	J12-1	



MULTI-MODE ENCODER PORT: COMMAND INPUTS

AS A MASTER OR CAMMING ENCODER INPUT FROM A DIGITAL QUADRATURE ENCODER

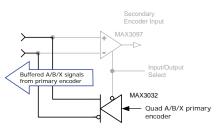
When operating in position mode the multimode port can accept digital command signals from external encoders. These can be used to drive cam tables, or as master-encoder signals when operating in a master/slave configuration.

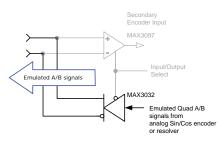
COMMAND INPUTS MULTI-PORT

Signal		Axis A Pin	Axis B Pin	
Enc A	Pulse	CW	J12-36	J12-42
Enc /A	/Pulse	/CW	J12-21	J12-27
Enc B	Dir	CCW	J12-35	J12-41
Enc /B	/Dir	/CCW	J12-20	J12-26
Enc X			J12-34	J12-40
Enc /X			J12-19	J12-25
+5V			32,17	J12-38,23
Sgnd		J12-31,16	J12-37,22	
Frame Gnd		J12	2-1	

AS DIGITAL COMMAND INPUTS IN PULSE/ DIRECTION, PULSE-UP/PULSE-DOWN, OR DIGITAL QUADRATURE ENCODER FORMAT

The multi-mode port can also be used when digital command signals are in a differential format. These are the signals that typically go to single-ended inputs. But, at higher frequencies these are likely to be differential signals in which case the multi-mode port can be used.


MULTI-MODE ENCODER PORT: FEEDBACK OUTPUTS


AS BUFFERED OUTPUTS FROM A DIGITAL QUADRATURE PRIMARY ENCODER

When using a digital quadrature feedback encoder, the A/B/X signals drive the multi-mode port output buffers directly. This is useful in systems that use external controllers that also need the motor feedback encoder signals because these now come from J12, the Control connector. In addition to eliminating "Y" cabling where the motor feedback cable has to split to connect to both controller and motor, the buffered outputs reduce loading on the feedback cable that could occur if the motor encoder had to drive two differential inputs in parallel, each with it's own 121 ohm terminating resistor.

AS EMULATED QUAD A/B/X ENCODER OUTPUTS FROM AN ANALOG SIN/COS FEEDBACK ENCODER

Analog sin/cos signals are interpolated in the drive with programmable resolution. The incremental position data is then converted back into digital quadrature format which drives the multi-mode port output buffers. Some analog encoders also produce a digital index pulse which is connected directly to the port's output buffer. The result is digital quadrature A/B/X signals that can be used as feedback to an external control system.

BUFFERED OUTPUTS MULTI-PORT

Signal	Axis A Pin	Axis B Pin
Enc A	J12-36	J12-42
Enc /A	J12-21	J12-27
Enc B	J12-35	J12-41
Enc /B	J12-20	J12-26
Enc X	J12-34	J12-40
Enc /X	J12-19	J12-25
+5V	32,17	J12-38,23
Sgnd	J12-31,16	J12-37,22
F.G.	J12-1	

Notes for XP2-230-20-R model:

* Buffered outputs from digital encoders on J10 & J11 are not supported.

** Emulated quad A/B outputs are only supported for resolver feedback

copley **Xenus**^{PLUS} 2-Axis CANopen

CME2 & AXIS A I/O CONNECTIONS

CME2 SCREEN FOR INPUTS [IN1~IN10]

	puts 1-10 Pull Down			Digital Outputs 1-4		12	Axis A	Axis B	Debounce tir	ne
۲	0	[IN1]	Amp Enable	-LO Enables With Clea	ar Faults	~	۲	0	0	ms
۲	0	[IN2]	Not Configu	ired		~	۲	0	0	ms
۲	0	[IN3]	Not Configu	ired		~	۲	0	0	ms
		[IN4]	Not Configu	ired		~	۲	0	0	ms
۲	0	[IN5]	Not Configu	ired		~	۲	0	0	ms
		[IN6]	Not Configu	ired		~	۲	0	0	ms
		[IN7]	Not Configu	ired		~	۲	0	0	ms
		[IN8]	Not Configu	ired		~	۲	0	0	ms
		[IN9]	Not Configu	ired		~	۲	0	0	ms
		[IN10]	Motor Temp	o-HI Disables		~	۲	0	0	ms
Inputs	2.3 0	Differen	itial 💿 Sing	le Ended	Inputs 4 -5 OD	ifferen	tial 🕥	Single En	dod	

+30Vmax +24V typical

+24V

Vmax

+12V

INPUT DATA

Input	Pin	R1	R2	C1			
IN1	J12-7	10k	10k	100p			
IN2	J12-8						
IN3	J12-9	10k	1k	100p			
IN4	J12-10	TUK					
IN5	J12-11						
IN6	J10-2						
IN7	J10-3						
IN8	J10-4		Opto				
IN9	J10-5						
ICOM1	J10-6						
IN10	J11-7	4.99k	10k	33n			
IN21	J11-24	10k	10k	100p			

HI/LO DEFINITIONS: INPUTS

Input	State	Condition
IN1,10,21	HI	Vin >= 2.5 Vdc
1111,10,21	LO	Vin <= 1.3 Vdc
IN2~5	HI	Vin > 2.5 Vdc
IN2~5	LO	Vin < 2.5 Vdc
	HI	Input diode ON
IN6~9	LO	Input diode OFF

IN6~9 are optically isolated and work from positive or negative input voltages. When voltage is applied to an input and current flows through the input diode of the opto-coupler the diode condition is ON. When no voltage is applied to an input and no current flows through the input diode it is OFF. [IN1]

[INx]

[IN2~5]

 Δ

12V

PullUp = 5V PullDown = 0V

74HC14

Δ

± 100p

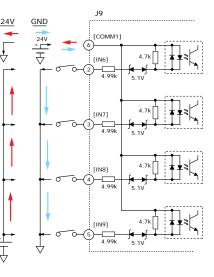
J12 Contro

10ĸĹ ₹

100 pF

100 pF

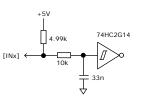
[IN2.4.12.


[IN3,5,13,15]

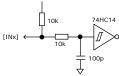
f

10k

10



INPUTS WITH PROGRAMMABLE PULL UP/DOWN


Input	Pin	PU/PD
IN1	J12-7	1
IN2	J12-8	2
IN3	J12-9	3
IN4	J12-10	4
IN5	J12-11	4

[IN10]

MAX3096

copley **Xenus**^{PLUS} 2-Axis CANopen controls

CME2 & AXIS B I/O CONNECTIONS

CME2 SCREEN FOR INPUTS [IN11~IN20]

	outs 1-10 Pull Dowr	- 10 m	nputs 11-20 Digital Outputs 1-4		Avis A	Axis B	Debounce time	
 O 	0	[IN11]	Amp Enable-LO Enables With Clear	Faults	0	 O 	0 ms	
•	0	[IN12]	Not Configured	~	0	۲	0 ms	
۲	0	[IN13]	Not Configured	~	0	۲	0 ms	
-	-	[IN14]	Not Configured	~	0	۲	0 ms	
۲	0	[IN15]	Not Configured	*	0	۲	0 ms	
		[IN16]	Not Configured	~	0	۲	0 ms	
		[IN17]	Not Configured	~	0	۲	0 ms	
		[IN18]	Not Configured	~	0	۲	0 ms	
		[IN19]	Not Configured	~	0	۲	0 ms	
		[IN20]	Motor Temp-HI Disables	~	0	۲	0 ms	
Inputs	12 -13	O Differ	ential 💿 Single Ended	Inputs 14 -15 🔘 Dif	ferential	Sing	jle Ended	

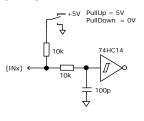
+30Vmax

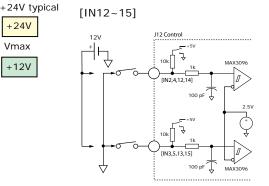
+24V

Vmax

+12V

INPUT DATA

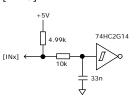

Input	Pin	R1	R2	C1		
IN11	J12-12	10k	10k	100p		
IN12	J12-13	10k 1k 100p				
IN13	J12-14					
IN14	J12-15					
IN15	J12-30					
IN16	J9-7					
IN17	J9-8					
IN18	J9-9		Opto			
IN19	J9-18					
ICOM2	J9-17					
IN20	J11-7	4.99k	10k	33n		
IN22	J11-24	10k	10k	100p		

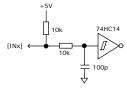

HI/LO DEFINITIONS: INPUTS

Input	State	Condition		
IN11,20,22	HI	Vin >= 2.5 Vdc		
1111,20,22	LO	Vin <= 1.3 Vdc		
IN12~15	HI	Vin > 2.5 Vdc		
1112~15	LO	Vin < 2.5 Vdc		
IN16~19	HI	Input diode ON		
11110~19	LO	Input diode OFF		

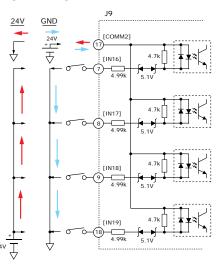
IN16~19 are optically isolated and work from positive or negative input voltages. When voltage is applied to an input and current flows through the input diode of the opto-coupler the diode condition is ON. When no voltage is applied to an input and no current flows through the input diode it is OFF.

[IN11]




INPUTS WITH PROGRAMMABLE PULL UP/DOWN

Input	Pin	PU/PD
IN11	J12-12	5
IN12	J12-13	6
IN13	J12-14	7
IN14	J12-15	0
IN15	J12v-30	8


[IN20]

[IN16~19]

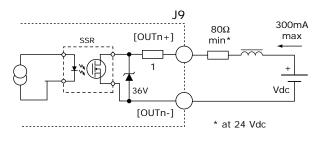
CME2 & OUTPUTS 1~4 CONNECTIONS

OUTPUT CONNECTIONS

CME2 SCREEN FOR OUTPUTS [OUT1~4]

Digital Inputs 1-10	Digital Inputs 11-20	Digital Outputs 1-4	Digital C	Outputs 5-7	
			Axis A	Axis B	
[OUT 1]	Fault-Active Off	~		0	
	Configure Cu	tom			
[OUT 2]	Fault-Active Off	×	0	۲	
	Configure Cu	stom	•		
[OUT 3]	Not Configured	*	•	0	
	Configure Cu	tom			
[OUT 4]	Not Configured	~	•	0	
	Configure Cu	stom			

OUTPUT DATA


[OUT1~4] SIGNALS

Signal	Pins	Signal	Pins			
[OUT1+]	J9-19	[OUT1-]	J9-10			
[OUT2+]	J9-20	[OUT2-]	J9-11			
[OUT3+]	J9-21	[OUT3-]	J9-12			
[OUT4+]	J9-22	[OUT4-]	J9-13			

HI/LO DEFINITIONS: OUTPUTS

Input	HI Output tr	Condition
	HI	Output transistor is ON, current flows
0011~4	LO	Output transistor is OFF, no current flow

[OUT1~4]

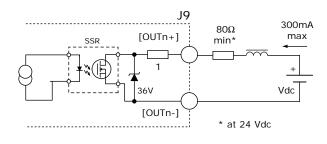
CME2 & OUTPUTS 5~7 CONNECTIONS

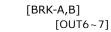
CME2 SCREEN FOR OUTPUTS [OUT5~7]

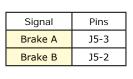
Input/Output							
Digital Inputs 1-10	Digital Inputs 11-20 Digital Outputs 1-4	Digital C	utputs 5-7				
[OUT 5]	Not Configured	Axis A	Axis B				
[OUT 6]	Brake-Active High] ③	0				
נסטד ז]	Brake-Active High] 0	۲				
Hold position	on when limit switch is active	<u>R</u> estore [Defaults				ose

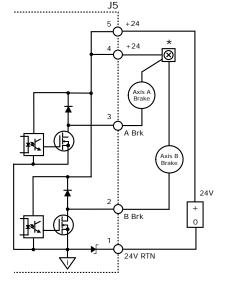
OUTPUT DATA [OUT5~7] SIGNALS

Signal	Pins	
[OUT5+]	J9-23	
[OUT5-]	J9-14	
[OUT6]	J5-3	
[OUT7]	J5-2	

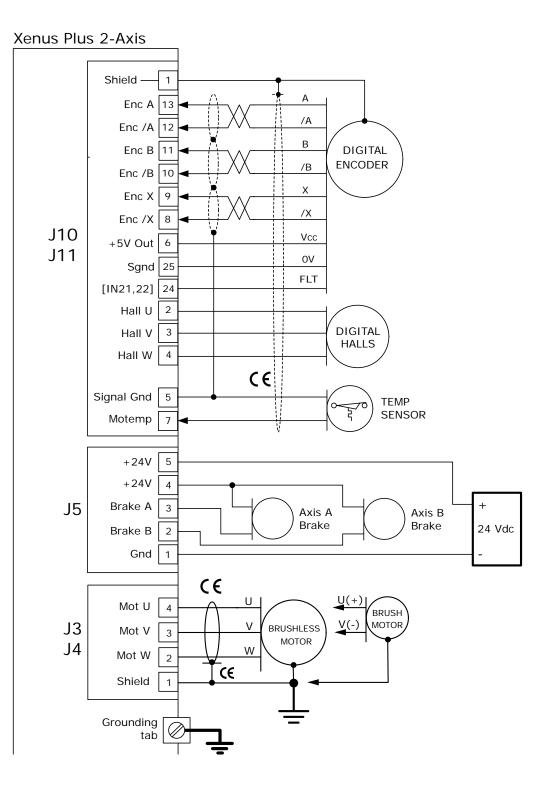

+30Vmax +24V typical +24V


HI/LO DEFINITIONS: OUTPUTS


Input	State	Condition		
OUT5	HI	Output transistor is ON, current flows		
0015	LO	Output transistor is OFF, no current flows		
HI BRK-A,B		Output transistor is OFF Brake is un-powered and locks motor shaft Motor cannot move Brake state is Active		
OUT6,7	LO	Output transistor is ON Brake is powered, releasing motor shaft Motor is free to move Brake state is NOT-Active		


CME2 Default Setting for Brake Outputs [OUT6,7] is "Brake - Active HI" Active = Brake is holding motor shaft (i.e. the *Brake is Active*)

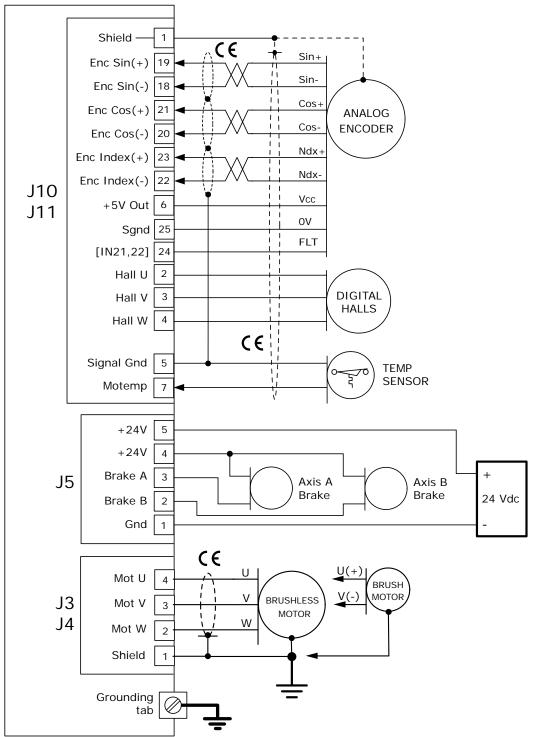
Active = Brake is holding motor shaft (i.e. the *Brake is Active*) Motor cannot move No current flows in coil of brake CME2 I/O Line States shows Output 6 or 7 as HI BRK Output voltage is HI (24V), MOSFET is OFF Servo drive output current is zero Servo drive is disabled, PWM outputs are off Inactive = Brake is not holding motor shaft (i.e. the *Brake is Inactive*) Motor can move Current flows in coil of brake CME2 I/O Line States shows Output 6 or 7 as LO BRK output voltage is LO (~0V), MOSFET is ON Servo drive is enabled, PWM outputs are on Servo drive output current is flowing [OUT5]



MOTOR CONNECTIONS FOR DIGITAL INCREMENTAL ENCODERS: XP2-230-20

For XP2-230-20-R, digital encoder feedback is not supported on J10 & J11. Use the Multi-Port on J12 for this type of feedback.

NOTES:


1) +5V Out on J10 & J11 are independent power supplies and each is rated for 500 mA

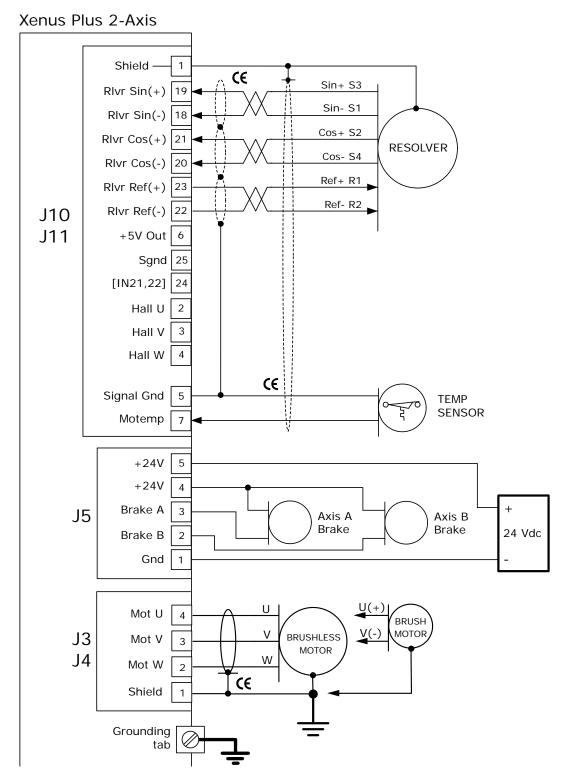
2) CE symbols indicate connections required for CE compliance.

For XP2-230-20-R, Sin/Cos/Index encoder feedback is not supported.

Xenus Plus 2-Axis

NOTES:

1) +5V Out on J10 & J11 are independent power supplies and each is rated for 500 mA


2) CE symbols indicate connections required for CE compliance.

MOTOR CONNECTIONS FOR RESOLVERS: XP2-230-20-R

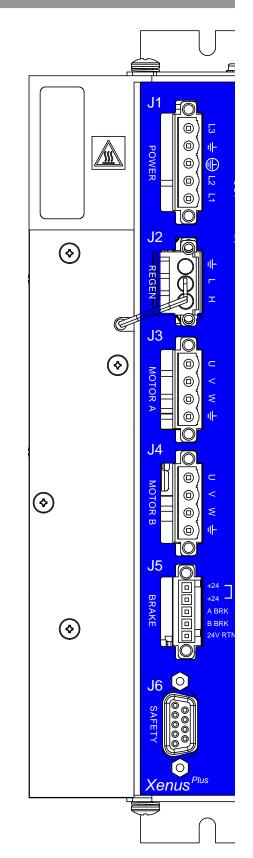
Digital incremental and absolute encoders may be connected to the Multi-Port on J12.

1) +5V Out on J10 & J11 are independent power supplies and each is rated for 500 mA

2) CE symbols indicate connections required for CE compliance.

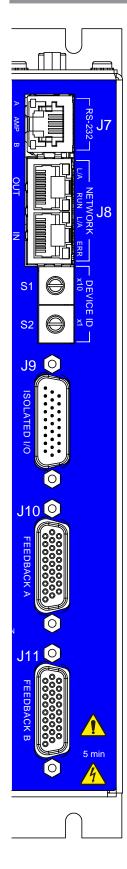
Xenus^{PLUS} 2-Axis CANopen

CONNECTIONS FOR XP2-230-20


WARNING: Hazardous voltages exist on connections to J1, J2, J3 & J4 when power is applied, and for up to 4 minutes after power is removed.

1501		4
	MAINS CONNEC	TIONS
I	Signal	Pin
	Mains Input L3	5
	Frame Ground	4
1	PE Ground	3
	Mains Input L2	2
	Mains Input L1	1
-	J2 REGEN RES	ISTOR
	Signal	Pin
	Frame Ground	3
	Regen -	2
	Regen +	1
J3	&J4 MOTOR OU	TPUTS
	Signal	Pin
	Motor Phase U	4
	Motor Phase V	3
		3 2
	Motor Phase V	
•••	Motor Phase V Motor Phase W Frame Ground	2
••• ••• !!	Motor Phase V Motor Phase W Frame Ground 5 +24 VDC & B	2 1 RAKE
ינ ינ קונ	Motor Phase V Motor Phase W Frame Ground 5 +24 VDC & B Signal	2
, , , , , , , , , , , , , , , , , , ,	Motor Phase V Motor Phase W Frame Ground 5 +24 VDC & B Signal 24V Input	2 1 RAKE Pin
	Motor Phase V Motor Phase W Frame Ground 5 +24 VDC & B Signal	2 1 RAKE Pin 5
••• •••]!	Motor Phase V Motor Phase W Frame Ground +24 VDC & B Signal 24V Input Brake 24V Output	2 1 RAKE Pin 5 4

J5 STO


PIN	SIGNAL	PIN	SIGNAL
1	1 Frame Gnd		STO-1(+)
2	STO-1(+)	7	STO-1(-)
3	STO-1(-)	8	STO-24V
4	STO-2(+)	9	STO-GND
5	STO-1(-)		

copley of controls

SIGNAL CONNECTIONS FOR XP2-230-20

J12 CONTROL (ON END PANEL)

	-		-		
PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	16	Signal Gnd	31	Signal Gnd
2	Ref1(-)	17	5V Out3	32	5V Out3
3	Ref1(+)	18	A-MultiEnc /S	33	A-MultiEnc S
4	Ref2(-)	19	A-MultiEnc /X	34	A-MultiEnc X
5	Ref2(+)	20	A-MultiEnc /B	35	A-MultiEnc B
6	Signal Gnd	21	A-MultiEnc /A	36	A-MultiEnc A
7	[IN1] GP	22	Signal Gnd	37	Signal Gnd
8	[IN2] GP	23	5V Out4	38	5V Out4
9	[IN3] GP	24	B-MultiEnc /S	39	B-MultiEnc S
10	[IN4] GP	25	B-MultiEnc /X	40	B-MultiEnc X
11	[IN5] HS	26	B-MultiEnc /B	41	B-MultiEnc B
12	[IN11] HS	27	B-MultiEnc /A	42	B-MultiEnc A
13	[IN12] HS	28	n.c.	43	n.c.
14	[IN13] HS	29	n.c.	44	Signal Gnd
15	[IN14] HS	30	[IN15]		

J9 ISOLATED I/O

PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
9	[IN18] GPI	18	[IN19] GPI	26	n.c.
8	[IN17] GPI	17	[IN16~19] COMM	25	n.c.
7	[IN16] GPI	16	n.c.	24	n.c.
6	[IN6~9] COMM	15	n.c.	23	[OUT5+]
5	[IN9] GPI	14	[OUT5-]	22	[OUT4+]
4	[IN8] GPI	13	[OUT4-]	21	[OUT3+]
3	[IN7] GPI	12	[OUT3-]	20	[OUT2+]
2	[IN6] GPI	11	[OUT2-]	19	[OUT1+]
1	Frame Ground	10	[OUT1-]		

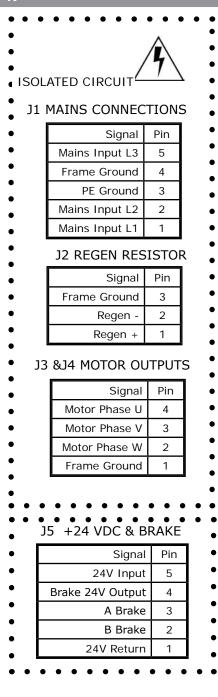
J10, J11 FEEDBACK

PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	10	Enc /B	19	Sin1(+)
2	Hall U	11	Enc B	20	Cos1(-)
3	Hall V	12	Enc /A	21	Cos1(+)
4	Hall W	13	Enc A	22	Indx(-)
5	Signal Gnd	14	Enc /S	23	Indx(+)
6	+5V Out1(2)	15	Enc S	24	EncFault
7	Motemp IN10(20)	16	Signal Gnd	25	Signal Gnd
8	Enc /X	17	+5V Out1(2)	26	Signal Gnd
9	Enc X	18	Sin1(-)		

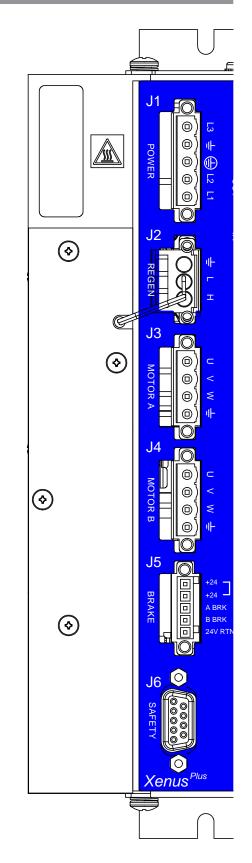
Note: Signals unique to axis A or axis B are shown as "Xxx A(B)"

All other signals are common to both axes A & B

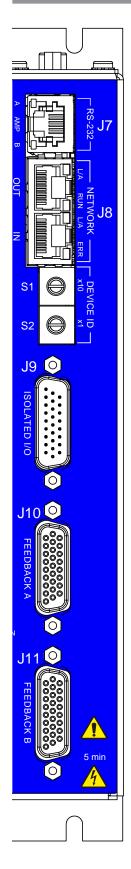
copley of controls


Xenus^{PLUS} 2-Axis CANopen

CONNECTIONS FOR XP2-230-20-R


WARNING: Hazardous voltages exist on connections to J1, J2, J3 & J4 when power is applied, and for up to 5 minutes after power is removed.

J5 STO


PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	6	STO-1(+)
2	STO-1(+)	7	STO-1(-)
3	STO-1(-)	8	STO-24V
4	STO-2(+)	9	STO-GND
5	STO-1(-)		

copley of controls

SIGNAL CONNECTIONS FOR XP2-230-R

PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	16	Signal Gnd	31	Signal Gnd
2	Ref1(-)	17	5V Out3	32	5V Out3
3	Ref1(+)	18	A-MultiEnc /S	33	A-MultiEnc S
4	Ref2(-)	19	A-MultiEnc /X	34	A-MultiEnc X
5	Ref2(+)	20	A-MultiEnc /B	35	A-MultiEnc B
6	Signal Gnd	21	A-MultiEnc /A	36	A-MultiEnc A
7	[IN1] GP	22	Signal Gnd	37	Signal Gnd
8	[IN2] GP	23	5V Out4	38	5V Out4
9	[IN3] GP	24	B-MultiEnc /S	39	B-MultiEnc S
10	[IN4] GP	25	B-MultiEnc /X	40	B-MultiEnc X
11	[IN5] HS	26	B-MultiEnc /B	41	B-MultiEnc B
12	[IN11] HS	27	B-MultiEnc /A	42	B-MultiEnc A
13	[IN12] HS	28	n.c.	43	n.c.
14	[IN13] HS	29	n.c.	44	Signal Gnd
15	[IN14] HS	30	[IN15]		

J9 ISOLATED I/O

PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
9	[IN18] GPI	18	[IN19] GPI	26	n.c.
8	[IN17] GPI	17	[IN16~19] COMM	25	n.c.
7	[IN16] GPI	16	n.c.	24	n.c.
6	[IN6~9] COMM	15	n.c.	23	[OUT5+]
5	[IN9] GPI	14	[OUT5-]	22	[OUT4+]
4	[IN8] GPI	13	[OUT4-]	21	[OUT3+]
3	[IN7] GPI	12	[OUT3-]	20	[OUT2+]
2	[IN6] GPI	11	[OUT2-]	19	[OUT1+]
1	Frame Ground	10	[OUT1-]		

J10, J11 FEEDBACK

N.C. = No Connection

PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	10	N.C.	19	Sin1(+) S3
2	Hall U	11	N.C.	20	Cos1(-) S4
3	Hall V	12	N.C.	21	Cos1(+) S2
4	Hall W	13	N.C.	22	Ref(-) R2
5	Signal Gnd	14	N.C.	23	Ref(+) R1
6	+5V Out1(2)	15	N.C.	24	EncFault
7	Motemp IN10(20)	16	Signal Gnd	25	Signal Gnd
8	N.C.	17	+5V Out1(2)	26	Signal Gnd
9	N.C.	18	Sin1(-) S1		

Note: Signals unique to axis A or axis B are shown as "Xxx A(B)"

All other signals are common to both axes A & B

Xenus^{PLUS} 2-Axis CANopen

WIRING

AC POWER, REGEN, AND MOTOR OUTPUTS: J1~J4

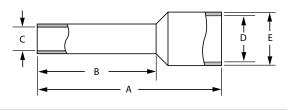
Wago MCS-MIDI Classic: 231-305/107-000 (J1) 231-303/107-000 (J2), 231-304/107-000 (J3, J4), female connector; with screw flange; 3-pole; pin spacing 5.08 mm / 0.2 in

Conductor capacity Bare stranded: Insulated ferrule: Stripping length: Operating Tool:

AWG 28~14 [0.08~2.5 mm2] AWG 24~16 [0.25~1.5 mm2] 8~9 mm Wago MCS-MIDI Classic: 231-159

J2 J1

J3, J4


Tool

FERRULE PART NUMBERS: SINGLE WIRE INSULATED

AWG	mm²	Color	Mfgr	PNUM	А	В	С	D	E	SL
14	2.5	Blue	Wago	216-206	15.0 (0.59)	8.0 (0.31)	2.05 (.08)	4.2 (0.17)	4.8 (0.19)	10 (0.39)
16	1.5	Black	Wago	216-204	14.0 (0.59	8.0 (0.31)	1.7 (.07)	3.5 (0.14)	4.0 (0.16)	10 (0.39)
18	1.0	Red	Wago	216-223	12.0 (.47)	6.0 (.24)	1.4 (.055)	3.0 (.12)	3.5 (.14)	8 (.31)
20	0.75	Gray	Wago	216-222	12.0 (.47)	6.0 (.24)	1.2 (.047)	2.8 (.11)	3.3 (.13)	8 (.31)
22	0.5	White	Wago	216-221	12.0 (.47)	6.0 (.24)	1.0 (.039)	2.6 (.10)	3.1 (.12)	7.5 (.30)

NOTES

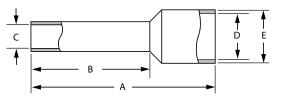
PNUM = Part Number SL = Stripping length Dimensions: mm (in)

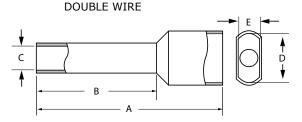
24V & BRAKE: J5

Wago MCS-MINI: 734-105/107-000, female connector; with screw flange, 5-pole; pin spacing 3.5 mm / 0.138 in

Conductor capacity Bare stranded: Insulated ferrule: Stripping length: Operating tool:

AWG 28~16 [0.08~1.5 mm2] AWG 24~16 [0.25~1.5 mm2] 0.24~0.28 in[6~7 mm] Wago MCS-MINI: 734-231


FERRULE PART NUMBERS: SINGLE WIRE INSULATED


AWG	mm²	Color	Mfgr	PNUM	А	В	С	D	E	SL
18	1.0	Red	Wago	216-223	12.0 (.47)	6.0 (.24)	1.4 (.06)	3.0 (.12)	3.5 (.14)	8 (.31)
20	0.75	Gray	Wago	216-222	12.0 (.47)	6.0 (.24)	1.2 (.05)	2.8 (.11)	3.3 (.13)	8 (.31)
22	0.5	White	Wago	216-221	12.0 (.47)	6.0 (.24)	1.0 (.04)	2.6 (.10)	3.1 (.12)	7.5 (.30)

FERRULE PART NUMBERS: DOUBLE WIRE INSULATED

AWG	mm²	Color	Mfgr	PNUM	А	В	С	D	E	SL
2 x 18	2 x 1.0	Red	Altech	2776.0	15.4 (.61)	8.2 [.32]	2.4 (.09)	3.2 (.13)	5.8 (.23)	11.0 (.43)
2 x 18	2 x 1.0	Gray	Altech	2775.0	14.6 (.57)	8.2 (.32)	2.0 (.08)	3.0 (.12)	5.5 (.22)	11.0 (.43)
2 x 20	2 x 0.75	White	Altech	2794.0	14.6 (.57)	8.2 (.32)	1.7 (.07)	3.0 (.12)	5.0 (.20)	11.0 (.43)
2 x 20	2 x 0.75	Gray	TE	966144-2	15.0 (.59)	8.0 (.31)	1.70 (.07)	2.8 (.11)	5.0 (.20)	10 (.39)
2 x 22	2 x 0.50	White	TE	966144-1	15.0 (.59)	8.0 (.31)	1.40 (.06)	2.5 (.10)	4.7 (.19)	10 (.39)

SINGLE WIRE

Xenus^{PLUS} 2-Axis CANopen

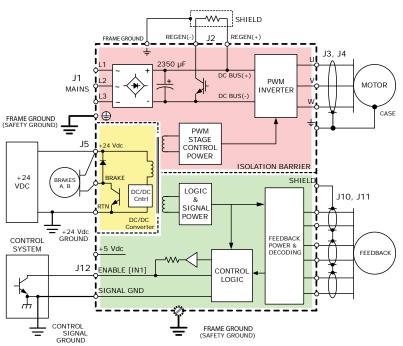
POWER & GROUNDING

DRIVE POWER SOURCES

An external +24 Vdc power supply is required, and powers an internal DC/ DC converter that supplies all the control voltages for drive operation. Use of an external supply enables CANopen communication with the drive when the mains power has been removed.

Power distribution in *XP2* is divided into three sections: +24 Vdc, signal, and high-voltage. Each is isolated from the other and all are isolated from the chassis.

EXTERNAL +24 VDC


The primary side of the DC/DC converter operates directly from the external +24 Vdc supply and is isolated from other drive power sections. The Brake outputs operate in this section and are referenced to the +24 Vdc return (0V). They sink current from an external load connected to the external +24 Vdc power source.

INTERNAL SIGNAL POWER

The signal power section supplies power for the control circuits as well as logic inputs and outputs. Motor feedback signals such as Halls, encoder, and temperature sensor operate from this power source. All signal circuits are referenced to signal ground. This ground should connect to the control system circuit ground or common so that drive and controller inputs and output voltage levels work properly with each other.

POWER SECTIONS

The graphic below shows the different power sections of the Xenus Plus drive and the isolation barriers between them. Only one motor is shown but all motor PWM drivers are in the mains-connected section.

MAINS POWER

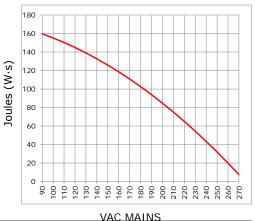
Mains power drives the high-voltage section. It is rectified and capacitorfiltered to produce +HV which the PWM stages convert into voltages that drive either three phase brushless or DC brush motors. An internal solid-state switch together with an external power resistor provides dissipation during regeneration when the mechanical energy of the motors is converted back into electrical energy that must be dissipated before it charges the internal capacitors to an overvoltage condition. All the circuits in this section are "hot", that is, they connect directly to the mains and must be considered high-voltages and a shock hazard requiring proper insulation techniques during installation.

GROUNDING

A grounding system has three primary functions: safety, voltage-reference, and shielding. As a safety measure, the primary ground at J1-3 will carry fault-currents from the mains in the case of an internal failure or short-circuit of electronic components. Wiring to this is typically done with the green conductor with yellow stripe using the same gauge wire as that used for the mains. The pin on the drive at J1-3 is longer than the other pins on J1 giving it a first-make, last-break action so that the drive chassis is never ungrounded when the mains power is connected. This wire is a 'bonding' conductor that should connect to an earthed ground point and must not pass through any circuit interrupting devices.

All of the circuits on J1, J2, J3, and J4 are mains-connected and must never be grounded. The frame ground terminals at J1-3, J2-3, J3-1, J4-1, J6-1, J9-1, J10-1, J11-1, and J12-1 all connect to the drive chassis and are isolated from all drive internal circuits.

Signal grounding references the drive control circuits to those of the control system. These controls circuits typically have their own earth connection at some point. To eliminate ground-loops it is recommended that the drive signal ground be connected to the control system circuit ground. When this is done the drive signal voltages will be referenced to the same 0 V level as the circuits in the control system. Small currents flow between controller and drive when inputs and outputs interact. The signal ground is the path for these currents to return to their power sources in both controller and drive.

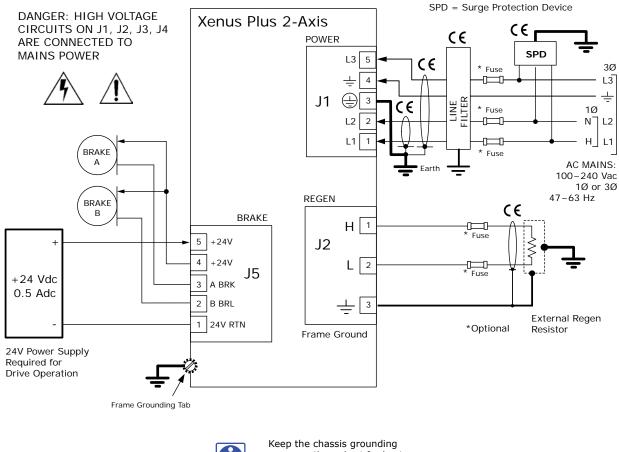

Shields on cables reduce emissions from the drive for CE compliance and protect internal circuits from interference due to external sources of electrical noise. Because of their smaller wire gauge, these should not be used as part of a safety-ground system. Motor cases can be safety-grounded either at the motor, by earthing the frame, or by grounding conductors in the motor cables that connect to J3-1 & J4-1. These cables should be of the same gauge as the other motor phase cables.

For CE compliance and operator safety, the drive heatplate should be earthed to the equipment frame. An unplated tab is provided on the heatplate (near to J1) for this connection.

REGENERATION

The chart below shows the energy absorption in W·s for an *XP2* drive operating at some typical mains voltages. When the load mechanical energy is greater than these values an external regen resistor is available as an accessory. The capacitor bank is 2350 uF and the energy absorption is shared with both axes.

ENERGY ABSORPTION


Tel: 781-828-8090

Fax: 781-828-6547 Page 31 of 36

POWER, REGEN, & BRAKE CONNECTIONS

connections short for best shielding performance

Notes:

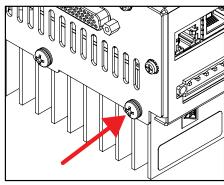
- 1) Items marked with CE are required for standards conformance.
- 2) In the end product installation, a UL RC (Recognized Component) SPD (Surge Protective Device) type 1CA, 2CA, 3CA or a UL Listed (VZCA) SPD type 1, 2, or 3 rated 2500 V, with a minimum SCCR of 5 kA, 240 Vac, and surge voltage monitoring needs to be provided if the over-voltage category of the installation is greater than Category II. When this occurs, the purpose of the SPD is to establish an over-voltage CAT II environment for the drives.
- 3) The line filter used in CE conformance testing was a Filter Concepts 3F15.
- Fuses and/or circuit breakers are optional and can be selected by the user to meet local codes and/or machine construction requirements.
- 5) The internal regen resistor of the XP2 must be unplugged when using an external regen resistor. Only one regen resistor can be connected to the Regen connector J2.

GROUNDING & SHIELDING

Grounding for Safety

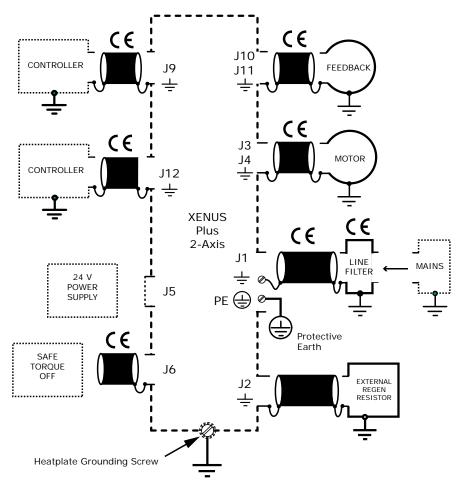
The protective earth (PE) ground at J1-3 (for both single and dual axis drives), is the electrical safety ground and is intended to carry the fault currents from the mains in the case of an internal failure or shortcircuit of electronic components. Wiring to this ground should be done using the same gauge wire as that used for the mains. This wire is a "protective bonding" conductor that should be connected to an earthed ground point and must not pass through any circuit interrupting devices. The PE ground also connects to the drive heatplate (Frame Ground, FG). Connections of the regen and motor cable shields to the FG points (J2-1, J3-1) is done to prevent the motor or regen resistor housing from becoming hazardous in the event of an insulation failure. Protective earth connections for the motor and regen resistor housings are subject to local electrical codes and must be reviewed for compliance with those codes. It is the responsibility of the end user to ensure compliance with local electrical codes and any other applicable standards. It is strongly recommended that motor and regen resistor housings also be connected to protective earth connection points located as close to the motor and regen resistor as possible. In many applications, the machine frame is used as a primary or supplemental protective earth connection point for the motor and regen resistor housings

Grounding and Shielding for CE Compliance


These connections are the means of controlling the emission of radio frequency energy from the drive so that it does not interfere with other electronic equipment. The use of shielded cables to connect the drive to motors and feedback devices is a way of extending the chassis of the drive out to these devices so that the conductors carrying noise generated by the drive are completely enclosed by a conductive shield. The FG ground terminals provide cable shield connection points for the motor, feedback, and regen resistor cables. By connecting the shields for these devices at the drive and at the device, the connection is continuous and provides a return path for radio-frequency energy to the drive.

To further minimize electrical noise it is important to keep the connection between the drive heatplate and earth/equipment frame as short as possible. A Heatplate Grounding Screw is provided for making this connection.

Grounding for Leakage Current Requirements


The connection to the Heatplate Grounding Screw also provides a second protective earthing conductor to address the touch current requirements of IEC 61800-5-1. *Further information on this topic can be found in the Xenus Plus User Guide.*

HEATPLATE GROUNDING SCREW

Keep the chassis grounding connections short for best shielding performance

Notes:

1) Shielded cables required for CE are shown in the diagram above.

2) Line filter required for CE

Xenus^{PLUS}2-Axis CANopen

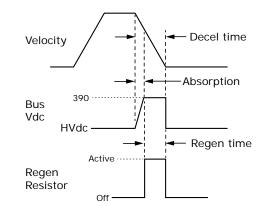
REGENERATION

The drive has has an internal regen resistor which can handle regenerative energy that exceeds the absorption capacity of the internal bus capacitance. The internal regen resistor will be switched on when the energy shown in the table has been absorbed and the bus voltage driven up to 390 Vdc at which point the internal regen resistor will be switched to absorb the kinetic energy of the load.

ABSORPTION							
Vac	Ε						
100	155						
120	145						
200	85						
240 43							

Absorption is the energy that can be transferred to the internal capacitors during deceleration. This table shows the energy absorption in W·s for a drive operating at some typical mains voltages. The capacitor bank is 2350 uF and the energy absorption is shared with both axes. If the deceleration energy is less than the absorption capacity of the drive, then a regeneration resistor will not be used because the bus voltage will not rise enough to hit the over-voltage level that would disable the PWM outputs.

Terms:


Ρ

E Energy

Power

Rotary Moment of Inertia

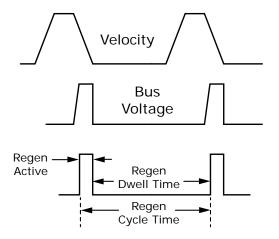
Joules, Watt-seconds kg·m² Watts

CALCULATING THE REGEN REPETITION FREQUENCY

Step 1: Find the energy of motion for a rotating load, for this example let it be 75 Joules:

 $E = J * \text{RPM}^2 = 75 \text{ J}$ Joules; kg·m², RPM 182

Step 2: Subtract the absorption at your mains voltage to get the energy that must be dissipated in the regen resistor. Use 240 Vac:

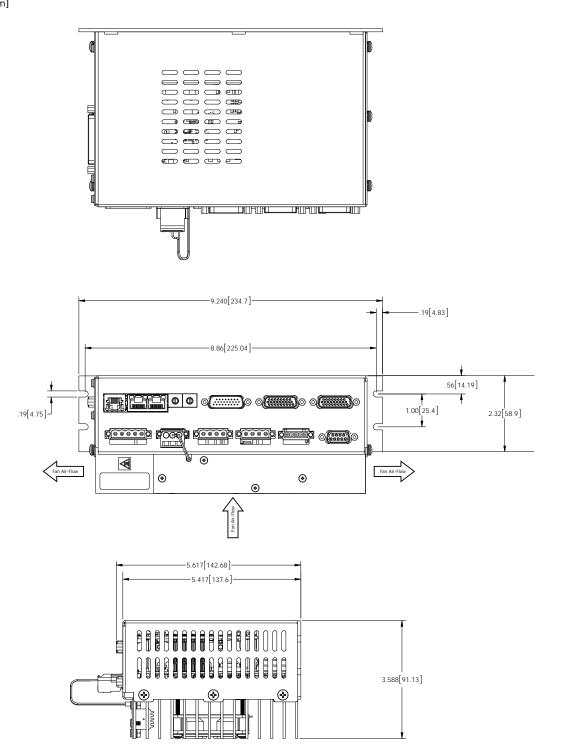

Step 3: Divide the regen energy by the continuous power rating of 20 Watts to get the dwell time that can dissipate the regen energy in the resistor:

Dwell Time = 32 Joules = 1.6 sec 20 Watts______Seconds; Joules, Watts

- Step 4: Find the total regen cycle time by adding the deceleration time to the dwell time:
 - Decel Time = 1.25 sec Dwell Time = 1.60 sec Cycle Time = 2.85 sec

INTERNAL REGEN RESISTOR

Max Energy	100 W·s (J)
Resistance	18 W
Power, continuous	20 W
Power, peak	70 W
Time	2000 ms



Xenus^{PLUS} 2-Axis CANopen

Units: in [mm]

Weight: 4.19 lb [1.90kg]

copley controls

CANOPER

ORDERING INFORMATION

XP2-230-20	XP2 Servo Drive 10/20 Adc, Encoder feedback
XP2-230-20-R	XP2 Servo Drive 10/20 Adc, Resolver feedback

Example: Order one *Xenus Plus XP2* drive, resolver version, solder-cup connector Kit, *CME 2* CD, serial cable kit Oty Item Remarks

XP2-230-20-R-H XP2-CK-02 1

CMF 2 SER-CK

Xenus Plus XP2 servo drive with resolver Connector Kit CME 2 CD Serial Cable Kit

1 ACCESSORIES

1

	Qty	Ref	Name	Description	Manufacturer P/N		
	1	J1	AC Pwr	Plug, 5 position, 5.08 mm, female	Wago: 231-305/107-000 (Note 1)		
	1	JI	AC PWI	Strain relief, snap-on, 5.08 mm, 5 position, orange	Wago: 232-635		
	1	J2	Dogon	Plug, 3 position, 5.08 mm, female	Wago: 231-303/107-000 (Note 1)		
	1	JZ	Regen	Strain relief, snap-on, 5.08 mm, 3 position, orange	Wago: 232-633		
	2	J3,J4	Motor	Plug, 4 position, 5.08 mm, female	Wago: 231-304/107-000 (Note 1)		
	2	13,14	WOLDI	Strain relief, snap-on, 5.08 mm, 4 position, orange	Wabo: 232-634		
	1	35	Brake	Plug, 5 position, 3.5 mm, female	Wago: 734-105/107-000 (Note 1)		
	1	12	DIAKE	Strain relief, snap-on, 3.5 mm, 5 position, grey	Wago: 734-605		
	1	J5	Tool	Tool, wire insertion & extraction, 734 series	Wago: 734-231		
XP2-CK Connector Kit	4	J1, J2, J3, J4	Tool	Tool, wire insertion & extraction, 231 series	Wago: 231-159		
	1			Connector, DB-9M, 9-position, standard, male	TE/AMP: 205204-4		
	9	J6	Cafab	AMPLIMITE HD-20 Crimp-Snap contacts, 24-20AWG, AU flash	TE/AMP: 66506-4		
	1	Note 2	Safety	Metal Backshell, DB-9, RoHS	3M: 3357-9209		
	4		L	Jumper, with pins crimped on both ends	Copley: 10-75177-01		
	1	J12	Control	Connector, high-density DB-44M, 44 position, male, solder cup	Norcomp: 180-044-103L001		
	1	JIZ	Control	Metal Backshell, DB-25, RoHS	3M: 3357-9225		
	1	39	1/0	Connector, high-density DB-26F, 26 position, female, solder cup	Norcomp: 180-026-203L001		
	2	J10~11	Feed-	Connector, high-density DB-26M, 26 position, male, solder cup	Norcomp: 180-026-103L001		
	3	J9~11	back	Metal Backshell, DB-15, RoHS	3M: 3357-9215		
SER-CK	1	J7	RS-232	Serial Cable Kit			
XP2-NC-10	1	J8	Network	CAN network cable, 10 ft (3 m)			
XP2-NC-01	1			CAN network cable, 1 ft (0.3 m)			

Note 1: For RoHS compliance, append "/RN01-0000" to the Wago part numbers listed above

Note 2: Insertion/extraction tool for J6 contacts is AMP/Tyco 91067-2 (not included in XP2-CK)

REGENERATION RESISTOR (OPTIONAL)

J2

1

XTL-RA-04

Regeneration resistor assembly, 15 Ω EDGE FILTER (OPTIONAL, ONE REQUIRED FOR EACH AXIS. QUANTITIES BELOW ARE FOR ONE FILTER AND ONE CONNECTOR KIT)

XTL-FA-01	1	J3~4	Edge filter		
Edge Filter		1	Plug, 4 position, 5.0 mm, female	Wago: 721-104/026-047 (Note 1)	
Connector Kit XTL-FK		1	Plug, 5 position, 5.0 mm, male	Wago: 721-605/000-044 (Note 1)	
		2	Tool, wire insertion & extraction	Wago: 231-131	

16-01418 Document Revision History

		5
Revision	Date	Remarks
00	May 17, 2016	Initial released version

Note: Specifications are subject to change without notice