

Analog Inputs

- ±10 Vdc current reference
- Peak, continuous current & peak-time set

Analog Outputs

- Current monitor
- Current reference

Digital Inputs

- Amp Enable
- Fwd/Rev Enable (limit switches)
- Hi/Lo load inductance

Digital Outputs

- Amp OK
- Regen control
- Brake control

Feedback

Digital Halls from brushless motors

Dimensions

- 53.3 x 45.7 x 15.2 mm
- 2.1 x 1.8 x 0.6 in

Actual Size

Model	Vdc	Ic	Ip
BTM-055-20	20~55	10	20
BTM-090-10	20~90	5	10

DESCRIPTION

Bantam is a compact, DC powered analog current amplifier for torque control of DC brush or brushless motors. It operates as a stand-alone driver taking a ± 10 V input from an external controller. Mounting to a PC board with solderless connectors facilitates low-cost, multi-axis designs.

The Amp Enable input interfaces to active LO signals up to 24 Vdc. Another digital input switches the current-loop gain from a high to low for load inductance compensation. Forward and Reverse Enable inputs are provided for limit switches.

A digital output for Amp-OK indicates the amplifier's status. There are two other digital outputs one of which can activate an external

regenerative energy dissipator circuit and another for motor brake control.

Digital Hall feedback enables trapezoidal drive of DC brushless motors. For driving DC brush motors, these inputs are left unconnected and the motor connected between the U & V outputs.

Protections include I2T current limiting for peak and continuous current as well as peak time. Short circuits between outputs or to ground and amplifier over-temperature produce latching faults.

DEVELOPMENT KIT

A Development Kit is available that provides mounting and easy connectivity for the Bantam.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 Web: www.copleycontrols.com Page 1 of 12

GENERAL SPECIFICATIONS

Test conditions: Load = Wye connected load: 2 mH + 2 Ω line-line. Ambient temperature = 25°C, +HV = HV_{max}

MODEL	BTM-055-20	BTM-090-10		
OUTPUT POWER				
Peak Current	20	10	Adc, ±5%	
Peak time	1	1	Sec	
Continuous current	10	5	Adc, ±5%	
Peak Output Power	1045	855	W	
Continuous Output Power	523	427	W	
Output resistance	0.075	0.075	Rout (Ω)	
Maximum Output Voltage	Vout = HV*0.97 - Rout*	*Iout		
NPUT POWER				
HV_{min} to HV_{max}	+20 to +55	+20 to +90	Vdc, Tr <mark>ansformer-isolated</mark>	
Ipeak	20	10	Adc (1 s <mark>ec) peak</mark>	
Icont	10	5	Adc continuous (Note 1)	
Aux HV	+20 to +	HVmax @ 500 mAdc ma	aximum	
WM OUTPUTS				
Туре		-phase MOSFET, 30 kHz		
Commutation	Trapezoi	dal using digital Hall <mark>fee</mark>	edback	
CONTROL				
Analog Reference Input	± 10 Vdc, 5 k Ω differential input	ut impedance		
Bandwidths	Current loop: 2.5 kHz typical,		h tuning & load inductance	
Minimum load inductance	200 μH line-line			
EEDBACK				
Digital Halls	3, non-isolated, for brushless	motor commutation		
Digital Halls	10 k Ω to +5 Vdc pull-up with		14 Schmitt trigger	
Power	, ,	+5 Vdc @ 250 mA max. (J1-21, 22) to power Hall sensors or commutating encoder		
IGITAL INPUTS				
Number	4			
[IN1] /Enable	Amplifier enable, LO active, H	I disables		
[FwdEn], [RevEn]			ute: HI will disable output current in direction	
Type	Forward and reverse direction limit switch/enable inputs: HI will disable output current in direction 74HC14 Schmitt trigger operating from +5 Vdc with RC filter on input			
туре	Vin-LO < 1.35 Vdc, Vin-HI >3		•	
			erating from +5 Vdc with RC filter on input	
	74HCT, Vil = 0.8 Vdc max, Vil		= -	
[LoInd] Low Inductance			ded: for lower inductance loads	
	The or open. for higher induced	——————————————————————————————————————	ded. for lower inductance loads	
NALOG INPUTS				
Number	5			
Ref(+), Ref(-)	Command input for output cu	•		
Peak Current Limit	0.5 to 4.80 Vdc sets peak cur			
Continuous Current Limit			~100% of rated continuous current	
I2T Limit	0.5 to 5.00 Vdc sets 10~1009		handrack and the state of the s	
Balance	±2.5 vac from the 2.5 Vdc qu	nescent state will adjust	t output current ±1% of peak rated current	
IGITAL OUTPUTS				
Number, type	3, N-channel MOSFET, open-d	rain, 30 Vdc max, 100 r	mA max for [AOK] and [OUT1], 1000 mA for [OUT2]	
[AOK]	Amp OK: active LO when amp	lifier has no faults and v	will operate when enabled	
[OUT1]	Configured as external regen	switch controller: will be	e LO to turn on regen switch	
[OUT2]			e LO when AOK and is enabled to release brake	
NALOG OUTPUT				
Current Monitor	±3.0 Vdc @ ±Ipeak			
Current Ref	Monitor for current-loop comm	nand: +3 0 V/dc - +100	0% of rated peak current	
Current Nei	Monitor for current-loop collin	nana. ±3.0 vuc – ±100	770 of raceu peak current	

NOTES

1) Heatsink is required for continuous current rating.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Web: www.copleycontrols.com

Tel: 781-828-8090 Fax: 781-828-6547 Page 2 of 12

MOTOR CONNECTIONS

Phase U, V, W PWM outputs to 3-phase ungrounded Wye or delta wound brushless motors, or DC brush motors (U-V)
Hall U, V, W Digital Hall signals, single-ended

Hall power +5 Vdc ±2% @ 250 mAdc max

PROTECTIONS

HV Overvoltage $+HV > HV_{max}$, Amplifier outputs turn off until $+HV < HV_{max}$ (See Input Power for HV)

HV Undervoltage +HV < +14 Vdc, Amplifier outputs turn off until +HV > +14 Vdc

Amplifier over temperature Heat plate > 70°C

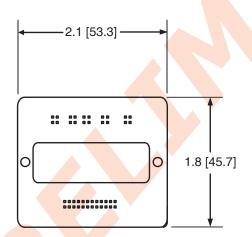
Short circuits Output to output, output to ground, internal PWM bridge faults I^2T Current limiting Programmable: continuous current, peak current, peak time

MECHANICAL & ENVIRONMENTAL

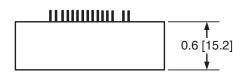
Size

2.1 x 1.8 x 0.6 [53.3 x 45.7 x 15.2] in [mm]

Weight


Ambient temperature 0 to +45 °C operating, -40 to +85 °C storage

Humidity 0 to 95%, non-condensing

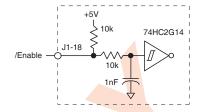

Contaminants Pollution degree 2 Environment IEC68-2: 1990

Cooling Conduction through heatplate on amplifier chassis, or convection

AMPLIFIER DIMENSIONS

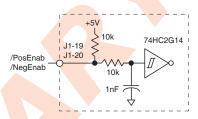
Dimensions in inches [mm]

Tel: 781-828-8090

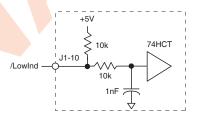


CONTROL INPUTS AND OUTPUTS

RoHS


ENABLE INPUT

The Enable input [IN1] is LO-active and pulled up to +5V by an internal 10k resistor. This provides fail-safe operation by disabling the amplifier if the Enable input is open, or a wire from the controller should break.


FWD/REV ENABLE INPUTS

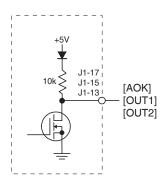
Two inputs are provided for limit switches.

LOAD INDUCTANCE INPUT

The [IN2] input controls the gain of the current error amplifier to compensate the amplifier for lower or higher inductance loads. Grounding the input reduces the gain of the current loop by 80% for low inductance loads.

ANALOG REFERENCE INPUT

The amplitude and polarity of the amplifier output current is controlled by a ± 10 V analog signal from an external controller.


BALANCE INPUT

The output current of the amplifier can be adjusted to 0 Adc by connecting the balance input to a potentiometer with an adjustment range of 0 to \pm 5 Vdc. This will produce an offset adjustment range of \pm 0.8% of the Ipeak rating of the amplifier. The table below shows the offset adjustment range in mA.

Model	±Ioffset (mA)
BTM-055-20	160
BTM-090-10	80

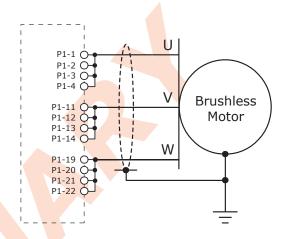
DIGITAL OUTPUTS

Three N-channel MOSFETs sink current from loads connecting to +30 Vdc maximum. Outputs [AOK] and [OUT1] can sink 100 mA maximum. The brake output [OUT2] can sink 1000 mA. An external flyback diode is required with driving inductive loads like a brake, or relays.

Tel: 781-828-8090

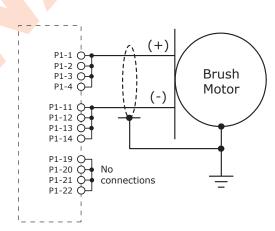
Copley Controls, 20 Dan Road, Canton, MA 02021, USA Web: www.copleycontrols.com

Fax: 781-828-6547 Page 4 of 12

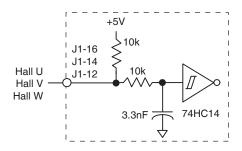

MOTOR CONNECTIONS

RoHS

Motor connections are of two types for brushless motors: phases and Halls. For brush motors, only the armature connections are needed. The phase or armature connections carry the amplifier output currents that drive the motor to produce motion. The Hall signals are three digital signals used for commutating a brushless motor. When using a brush motor the Hall inputs should be unconnected and the motor armature connections made between the U & V phase outputs.


MOTOR PHASE CONNECTIONS: BRUSHLESS

The amplifier output is a three-phase PWM inverter that converts the DC buss voltage (+HV) into DC voltage waveforms that drive two motor phase-coils at a time (trapezoidal commutation). Cable should be sized for the continuous current rating of the amplifier. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the equipment frame ground for best results.


MOTOR PHASE CONNECTIONS: BRUSH

The amplifier output is an H-bridge PWM inverter that converts the DC bus voltage (+HV) into a DC voltage waveform that drives the motor armature. Cable should be sized for the continuous current rating of the amplifier. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the equipment frame ground for best results.

MOTOR HALL SIGNALS

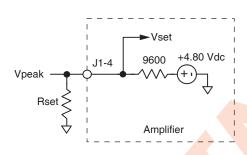
Hall signals are single-ended signals that provide absolute feedback within one electrical cycle of the motor. There are three of them (U, V, & W) and they may be sourced by magnetic sensors in the motor, or by encoders that have Hall tracks as part of the encoder disc. They typically operate at much lower frequencies than the motor encoder signals, and are used for commutation. When driving DC brush motors, the Hall inputs should be left unconnected.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Web: www.copleycontrols.com

Tel: 781-828-8090 Fax: 781-828-6547 Page 5 of 12

CURRENT LIMITING INPUTS CURRENT LIMIT INPUTS

Two inputs are provided for setting the peak and continuous current limits. The I-Peak and I-Cont inputs each have equivalent circuits shown below. Limits can be set either by applying a voltage (Vset) to the input or by connecting a resistor (Rset) between input and signal ground. The tables below show values for Rset and Vset that give 5~95% of the rated peak and continuous current ratings.


AMPLIFIER MODELS AND RATINGS

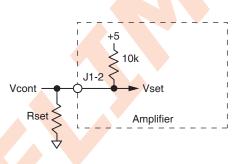
Model	I-Peak	I-Cont	T-Peak
BTM-055-20	20	10	1
BTM-090-10	10	5	1

PEAK CURRENT LIMIT SETTINGS

%	Rset	Vset
90	86400	4.32
80	38400	3.84
70	22400	3.36
60	14400	2.88
50	9600	2.4
40	6400	1.92
30	4114	1.44
20	2400	0.96
10	1067	0.48

EQUIVALENT CIRCUIT

EXAMPLE Ipeak SETTING


Set Ipeak to 15 A for the model BTM-055-20:

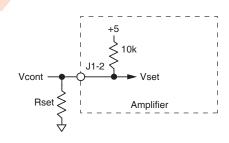
- 1) Find % of Ipeak = 15 / 20 = 0.75 = 75%
- 2) Using a resistor, find the closest standard value to 28800 ohms: 28.7k, 1%.
- 3) Using a voltage at the input, apply 3.60 Vdc

CONTINUOUS CURRENT LIMIT SETTINGS

%	Rset	Vset
90	88189	4.38
80	39195	3.90
70	22864	3.41
60	14698	2.92
50	9799	2.44
40	6533	1.95
30	4199	1.46
20	2450	0.97
10	1089	0.49

EQUIVALENT CIRCUIT

EXAMPLE Icont SETTING


Set Icont to 3.0 A for the model BTM-090-10:

- 1) Find % of Icont = 3 / 5 = 0.60 = 60%
- Using a resistor, find the closest standard value to 14698 ohms: 15.0k, 1%.
- 3) Using a voltage at the input, apply 2.92 Vdc

12T LIMIT SETTINGS

%	Rset	Vset
90	90000	4.50
80	40000	4.00
70	23333	3.50
60	15000	3.00
50	10000	2.50
40	6667	2.00
30	4286	1.50
20	2500	1.00
10	1111	0.50

EQUIVALENT CIRCUIT

EXAMPLE I2T SETTING

Set I2T to 60%:

- 1) Rset = 10k * (% / (100 %)) where % is the percent of the I2T maximum
- 2) Solve for Rset: Rset = 10k * (60 / (100 - 60)) = 15k

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: Web: www.copleycontrols.com

Fax: 781-828-6547 Page 6 of 12

AMPLIFIER PC BOARD CONNECTORS

RoHS

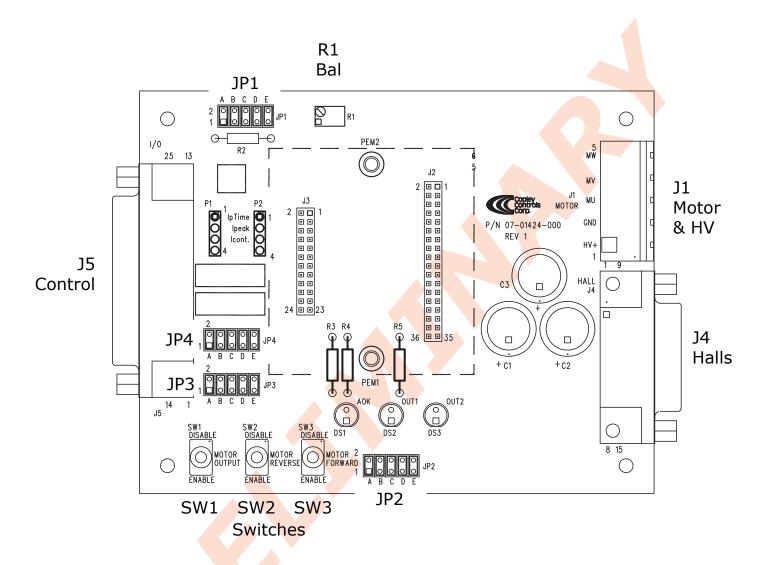
Top View Drive viewed from above looking down on the pc board on which it is mounted. Pins shown in grey are unused locations in PC board Pin 1 socket P1: Motor & HV J1: Signal Dual row, 0.1" centers Dual row, 0.1" centers 36 position female header 24 position female header Samtec: SSW-118-01-S-D Samtec: SSW-112-01-S-D Pin 24 Pin 36

J1 SIGNALS & PINS

Signal	Р	in	Signal
I2T Time	2	1	Current Ref
Peak Curr Limit	4	3	Ref(+)
Cont Curr Limit	6	5	Agnd
N.C.	8	7	Ref(-)
/LowInd	10	9	Balance
Hall W	12	11	Current Monitor
Hall V	14	13	[OUT2]
Hall U	16	15	[OUT1]
/Enable	18	17	[AOK]
/Neg Enable	20	19	/Pos Enable
Hall +5V	22	21	Hall +5V
Pgnd	24	23	Pgnd

P1 SIGNALS & PINS

Signal	Р	in	Signal
Motor U	2	1	Motor U
Motor U	4	3	Motor U
N/C	6	5	N/C
N/C	8	7	N/C
N/C	10	9	N/C
Motor V	12	11	Motor V
Motor V	14	13	Motor V
N/C	16	15	N/C
N/C	18	17	N/C
Motor W	20	19	Motor W
Motor W	22	21	Motor W
N/C	24	23	N/C
Pgnd	26	25	Pgnd
Pgnd	28	27	Pgnd
N/C	30	29	N/C
N/C	32	31	N/C
+HV	34	33	+HV
+HV	36	35	+HV


NOTES

- 1. Grey-shaded signal are N.C. (No Connection)
- 2. Signals are grouped for current-sharing on the power connector. When laying out pc board artworks, all pins in groups having the same signal name must be connected.
- 3. The total current current from J1-21 and J1-22 cannot exceed 250 mA.

DEVELOPMENT KIT TOP VIEW

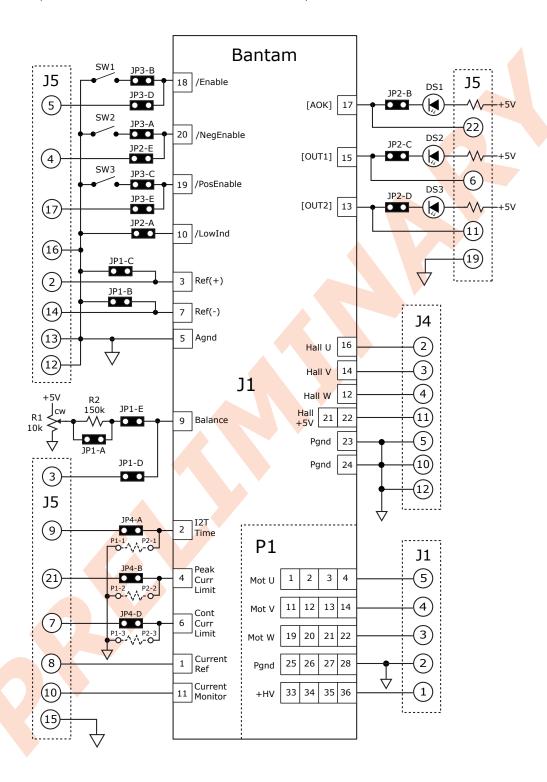
RoHS

The graphic below shows the placement of components and connectors on the Development Kit PC board. The Bantam amplifier is not shown, but mounts in the outline that contains connectors J3 & J2.

Tel: 781-828-8090

Fax: 781-828-6547

Page 8 of 12


Bantan

CONNECTIONS

RoHS

In the diagram below, connectors inside the Bantam outline are the amplifier connectors, their signal names, and pin numbers. All connectors and components outside of the Bantam are on the Development Kit.

NOTES

1) The combined current from J4-11 and J5-23 cannot exceed 250 mA.

JUMPER FUNCTIONS

RoHS

The functions shown in the tables below are in effect when the jumper is in place. When a jumper is removed, the stated function is disabled. J5 connects to an external controller

JP1

JP1	Remarks
Α	Shorts 150k balance scaler
В	Ref(-) input is grounded
С	Ref(+) input is grounded
D	Connects J5-3 to Amp: Balance
E	R1 controls Amp: Balance

JP3

JP3	Remarks
Α	Connects SW2 to Amp: /Neg Enable
В	Connects SW1 to Amp: /Enable
С	Connects SW3 to Amp: /Pos Enable
D	Connects J5-5 to Amp: /Enable
Е	Connects J5-17 to Amp: /Pos Enable

JP2

JP2	Remarks
Α	Gain Select to Sgnd
В	Amp: [AOK] drives DS1
С	Amp: [OUT1] drives DS2
D	Amp: [OUT2] drives DS3
E	Connects J5-4 to Amp: /Neg Enable

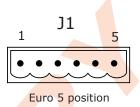
JP4

JP4	Remarks		
Α	Connects J5-9 to Amp: I2T Time		
В	Connects J5-21 to Amp: Current Peak Limit		
С	No connections		
D	Connects J5-7 to Amp: Current Cont Limit		
E	Connects J5-18 to Amp: Gain Select		

SOCKETED COMPONENTS

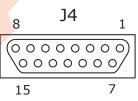
P1/P2	Remarks
1	I2T Time setting resistor
2	Ipeak setting resistor
3	Icont setting resistor
4	No function

Tel: 781-828-8090 Fax: 781-828-6547 Page 10 of 12



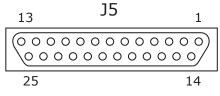
CONNECTORS

These charts show the pins and signals for the Development Kit connectors.


J1 MOTOR AND HV POWER

Pin	Signal		
5	Mot U		
4	Mot V		
3	Mot W		
2	HV Gnd		
1	+HV Input		

J4 HALLS


Signal	Pin		Signal
Sgnd	1	9	n.c.
Hall U	2	10	Sgnd
Hall V	3	11	+5 Vdc output
Hall W	4	12	Sgnd
Sgnd	5	13	n.c.
n.c.	6	14	n.c.
n.c.	7	15	n.c.
n.c.	8		

D-Sub 15 female

J5 CONTROL

Signal	Р	in	Signal
Sgnd	1	14	Ref(-)
Ref(+)	2	15	Sgnd
Ext Balance	3	16	Sgnd
/Neg Enable	4	17	/Pos Enable
/Enable	5	18	Gain Select
[OUT1]	6	19	Sgnd
Current Cont Limit	7	20	n.c.
Current Ref	8	21	Curr Peak Limit
I2T Time	9	22	[AOK]
Current Monitor	10	23	+5 Vdc Output
[OUT2]	11	24	n.c.
Sgnd	12	25	n.c.
Sgnd	13		

D-Sub 25 female

NOTES

1) The combined current from J4-11 and J5-23 cannot exceed 250 mA.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Web: www.copleycontrols.com

Tel: 781-828-8090 Fax: 781-828-6547

Page 11 of 12

MASTER ORDERING GUIDE

BTM-055-20	Bantam analog current amplifier, 10/20 Adc
BTM-090-10	Bantam analog current amplifier, 5/10 Adc
BDK-090-01	Development kit
BDK-CK	Connector Kit for Development Kit

ORDERING EXAMPLE

Example: Order 1 BTM-055-20 current amplifier and development kit:

Qty Item Remarks

1 BTM-055-20 Bantam current amplifier

1 BDK-090-01 Development Kit for Bantam amplifier 1 BDK-CK Connector Kit for Development Kit

ACCESSORIES

ORDER NUMBER	Qty	Ref	DESCRIPTION
BDK-CK Connector kit for BDK-090-01 Development Kit (includes next 5 items shown below)			
	1	J1	Connector, RoHS, Euro style plug, 5 position, Tyco (AMP) 796635-5
	1	J4	Connector, D-Sub, 15-position, male, RoHS, Tyco (AMP) 5-747908-2
	1	J4	Backshell, D-Sub, RoHS, metallized, 15-position, Norcomp 979-015 <mark>-020R</mark> 121
	1	J5	Connector, D-Sub, <mark>25-posi</mark> tion, male, RoHS, Tyco (AMP) 5-747912-2
	1	J5	Backshell, D <mark>-Sub, RoHS, me</mark> tallized, 25-position, Norcomp 979-025-020R121

Rev 2.01_fr 01/16/2009

Fax: 781-828-6547

Page 12 of 12

Tel: 781-828-8090